University of I	Louisville	Chem 105	Dr. Hoyt	Fall 2015	
Final Exam	December 12				

See announcements on Blackboard next week for office hour announcement.

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

In the meantime, read this...

- Clearly **print** and **sign** your name here:
- On your Scantron card, please record the following:
 Name: (your name) Subject: Chem 105 Date: 12/12/15
 Test no.: Final Period: (your section-day, eve or online)
- You may not leave the room before the Instructor announcement at 11:30. After that time, you may leave, but you must turn in your Scantron form before leaving the room. You will not be permitted to return to the exam room (unless you have previously made arrangements with the Instructor).
- At the end of the exam, turn in **only your Scantron form**. All answers will be recorded on the Scantron form. If you record your answers in the test booklet, you will be able to check them against the posted key this weekend. Since you're keeping the test booklet, you can take it apart and use any parts of it as scratch paper.
- You may use your calculator and a pencil. **Scantron only reads pencil** reliably. Use of other writing implements on the Scantron form may cause delays or errors in scoring.
- No papers or objects other than your exam paper, calculator, and pencils are permitted. All other papers and objects must be stowed out of sight. Put all notes, books, etc away and out of sight. Turn off audible and vibrate signals on all electronic devices, and put all devices other than your calculator away and out of sight. Communications devices must be put away. Use of calculator functions on communication devices is not permitted. Sharing calculators is not permitted.
- If you need more scratch paper, you may get it from the proctors. You may not use your own paper.
- Strategy hint: take a quick look over the whole exam before you start. If you see something that looks easy for you, go for it! It's good to get a few points in the bag right away.
- Strategy hints for multiple choice:
 - when you have determined that an option is not correct, mark it off so you don't have to check it again!
 - even if you think you have found the right answer, look at the remaining answers to see if any of them are a better match.

Wandering eyes will not be tolerated. Students who appear to have trouble keeping their eyes on their own paper will be moved to a more appropriate location.

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

J niversi	ty of	Loui	isville	e		Che	m 10	5		Dr. Hoyt			Fall 2015				
Final Exan	n		Dec	ember	:12												
1A 1 H	2A]	Perio		Tab eme	ole o nts	f the	•			3A	4A	5A	6A	7A 1 H	8A 2 He
11 1.008 3 Li	4 Be	3B	4 B	5B	6 B	7 B		8B		1B	2B	5 B	6 C	7 N	8 0	11 <u>1.008</u> 9 F	4.003 10 Ne
6.941 11 Na	9.012 12 Mg			\mathbb{A}	\triangle	\bigwedge				\mathbb{A}		10.81 13 Al	12.01 14 Si 28.09	14.01 15 P 30.97	16.00 16 S 32.06	19.00 17 Cl	20.18 18 Ar
22.99 19	24.31 20	21	22	23	24	25	26	27	28	29	30	26.98 31	32	30.97	34	35.45 35	39.95 36
K	Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
<u>39.10</u> 37	40.08 38	44.96 39	47.87 40	50.94 41	52.00 42	54.94 43	55.85 44	58.93 45	58.69 46	63.55 47	65.41 48	69.72 49	72.64 50	74.92 51	78.96 52	79.90 53	83.80 54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.9 87	137.3 88	138.9 89	178.5 104	180.9 105	183.8 106	186.2 107	190.2 108	<u>192.2</u> 109	195.1 110	<u>197.0</u> 111	200.6 112	204.4 113	207.2 114	209.0 115	[209] 116	[210]	[222]
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg		110		110			
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[277]	[268]	[281]	[272]	[285]	[284]	[289]	[288]	[292]		
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	nthanic	les	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				140.1 90	140.9 91	<u>144.2</u> 92	[145] 93	150.4 94	152.0 95	157.2 96	158.9 97	162.5 98	164.9 99	167.3 100	168.9 101	173.0 102	175.0 103
		ctinide			A						Constanting and the second		1.00			12	
	P	cunide	5	Th 232.0	Pa 231.0	U 238.0	Np	Pu [244]	Am [243]	Cm	Bk	Cf	Es	Fm	Md	No [259]	Lr [262]
				232.0	431.0	230.0	1437	1244	1443	124/	<u>[</u> 247]	491	454	1437	4.50	1437	

Potentially useful information:

 $[H^+] \times [OH^-] = 1.0 \text{ x } 10^{-14} \qquad pH = -log[H^+] \qquad [H^+] = 10^{-pH}$

 $1 \text{ ppm} = 1 \mu \text{g/mL}$

1 ppb = 1 ng/mL

 $1 \text{ mol} = 6.022 \text{ x} 10^{23}$

Strong acids: HCl HNO_3 H_2SO_4

1% w/v = 1g/100 mL = 1 g/dL

Dilution: $C_1 \times V_1 = C_2 \times V_2$ equivalents = moles x charge

University of l	Louisville	Chem 105	Dr. Hoyt	Fall 2015
Final Exam	December 12			
Part I. True	False and Multiple (Choice, 1 point each	. Record your answer or	the Scantron card.

A. Decide whether each of the following statements is (A) TRUE or (B) FALSE.

A TRUE B FALSE

1 $H_2PO_4^-$ is both diprotic and amphiprotic.

- 2 If a molecule can form hydrogen bonds with water, the compound will always be soluble in water.
- 3 The lower the pH of a solution, the more basic it is.
- 4 The molecule to the right is a monosaccharide.
- 5 Compounds that dissolve in water are called electrolytes.
- 6 H_2 is a binary compound.
- 7 The only functional groups in a typical triglyceride are alkenes and amides.
- 8 H_2 is a diatomic molecule.
- 9 "Condensation" can refer to both a physical process and a chemical reaction.
- 10 The process of freezing liquid water to form ice is exothermic.
- 11 SiO₂ is an ionic compound.
- 12 The name "lipoprotein" indicates a molecule that includes both fatty acids and amino acids.
- 13 Polypeptides are formed by condensation reactions between monosaccharides.
- 14 "Denaturing" refers to a disruption in the primary, secondary or tertiary structure of a steroid.
- 15 One atom of helium has a mass of 4.003 g.
- 16 If two atoms are isotopes of each other, they will have the same mass number.
- 17 In an acid-base neutralization reaction, the acid donates an H⁺ ion to the base.

B. Assign each of the following as (A) SOLUBLE in water or (B) INSOLUBLE in water. (In each case, think about the kind of substance and what factors go into making it soluble or insoluble. Drawing structures or writing formulas may help.)

A SOLUBLE	B INSOLUBLE	но
18 lead(II) sulfide	21 a monosaccharide	
19 methanol	22 potassium hexanoate	H _{mm}
20 ascorbic acid (see structure)	23 2,3-dimethylbutane	HO OH Ascorbic acid

C. Assign each of the following aqueous solutions as (A) acidic, (B) basic or (C) neutral. (In each case, think about the kind of substance and what factors go into making it act as an acid, a base, or neither.)

	A ACIDIC	B BASIC	C NEUTRAL
24	A solution with pH 0		27 A solution of 0.1 M CH_3OH
	-		
25	A solution with $[H^+] = 1.0$	$\times 10^{-8} \text{ M}$	28 A solution of 0.1 M CH ₃ CO ₂ H
	2 3		5 2

26 A solution of 0.1 M NaOH

OН

University of Louisville		Chem 105	Dr	. Hoyt	Fall 2015
Final Exam	December 12				
Part I	continued (1 point each).				
liquid	or (C) gas. (Again, in each e at room temperature. Dr	a case, think about the	e kind of su	bstance and w ulas may help	ether it will be (A) solid, (B) what the factors are that decide
29 me	thanoic acid (formic acid)		32	manganese s	ulfide
30 eth	yne		33	3,3-diethylpe	entane
31 <i>chi</i>	tin, a polysaccharide		34	an unsaturate	ed fat

D. The following items refer to the molecule shown at right (a drug used in some allergy medications). For each functional group, **mark (A) if the functional group is present, (B) if it is not.** (*Hint: circle and label the functional groups in the structure first, then answer for each of the functional groups listed.*)

A PRESENT B NOT PRESENT

		ОН
35 alcohol	42 ester	
36 aldehyde	43 ether	
37 ketone	44 phenol	ОН
38 amine	45 thiol	
39 amide	46 aromatic group	
40 carboxylic acid		OH
41 cis-alkene		

E. Determine whether each of the following names refers to a molecule that (A) cannot exist or violates the rules of bonding, (B) does not violate the rules of bonding but is named incorrectly, or (C) is a reasonable molecule with the correct name.

A Not possible B Possible, but wrong name

C Possible and correctly named

- 47 1-methylhexane
- 48 4-propanal
- 49 hexanoic acid
- 50 2,2-dimethylpropane

Turn your Scantron card over. You will start the next multiple choice section on #51.

	Don't put your answ	wer here. Put it in the space provided on your Scantron.
Part III. Multight the back of the		ach). Check the problem numbers carefully and record your answers on
	entration of hCG usual	ion of hCG (a hormone produced during pregnancy) is measured in units of lly reaches 1000 mIU/mL around three weeks past conception.
	mIU = 1 IU	B 1000 mIU = 1000 IU C 1000 mIU = 0.1 IU
	mIU = 0.001 IU	E 1000 mIU = 0.000 001 IU
52 Which object	et below has a volume	closest to one deciliter ?
A a hu	man nerve cell	B the eraser on a standard wooden #2 pencil C a horse
D your	Chemistry textbook	E a typical computer mouse
53 A certain ion	n has 12 protons, 13 ne	eutrons and 10 electrons. What is its mass number ?
A 10	B 12 C 13	3 D 24.31 E 25
54 A certain ion A -2	n has 12 protons, 13 no B +2 C 10	eutrons and 10 electrons. What is its charge ? 0 D 12 E 25
$\begin{array}{c} A NH_4 \\ B NH_4 \\ C NH_3 \\ D NH_4 \end{array}$	molecules and NO ₃ m molecules and HNO ₃	rrounded by water molecules in solution. nolecules are surrounded by water molecules in solution. molecules are surrounded by water molecules in solution. rre surrounded by water molecules in solution.
- / · · ·		e in a molecule of ascorbic acid (Vitamin C)? D 9 E 10 HO HO
A 6 57 A certain ele anions of any ot	her charge). It also co compounds. To which e gases B al	mic anion with a charge of -1 (and does not form
A 6 57 A certain ele anions of any ot form molecular A nobl D halo	her charge). It also co compounds. To which e gases B al gens E tra	mic anion with a charge of -1 (and does not form ombines with nonmetal atoms of other elements to h group does this element likely belong? Ikali metals C alkaline earth metals
A 6 57 A certain ele anions of any ot form molecular A nobl D halo	her charge). It also co compounds. To which e gases B al gens E tra	mic anion with a charge of -1 (and does not form ombines with nonmetal atoms of other elements to h group does this element likely belong? Ikali metals C alkaline earth metals ansition metals
A 6 57 A certain ele anions of any ot form molecular A nobl D halo 58 What is the A AlS	her charge). It also co compounds. To which e gases B al gens E tra formula of the compou B Al_2S_3	mic anion with a charge of -1 (and does not form ombines with nonmetal atoms of other elements to h group does this element likely belong? Ikali metals C alkaline earth metals ansition metals und aluminum sulfate ?
A 6 57 A certain ele anions of any ot form molecular A nobl D halo 58 What is the A AlS 59 What is the	her charge). It also co compounds. To which e gases B al gens E tra formula of the compou B Al_2S_3	mic anion with a charge of -1 (and does not form ombines with nonmetal atoms of other elements to h group does this element likely belong? Ikali metals C alkaline earth metals ansition metals und aluminum sulfate ? C Al_3S_2 D $Al_2(SO_4)_3$ E $AlSO_4$

Chem 105 December 12

Part II. In the green space on the back of your Scantron card, draw a simple sketch of the hydrogen-bonding interaction between a molecule of pentanal and a molecule of water. (If you don't know what pentanal is, draw

Dr. Hoyt

University of L	ouisville	Chem 105	
Final Exam	December 12		

60 In the diagram to the right, solutions A and B are separated by a membrane that is permeable to water, glucose and ions. Solution

A contains 0.10 M NaCl and 0.05 M glucose; Solution B contains 0.05 M NaCl and 0.10 M glucose. Which of the following statements is false? (Hint: analyze and mark whether each statement is true or false.)

- A Initially, water flows from Solution B to Solution A.
- B Glucose dialyzes from Solution B to Solution A.
- C Sodium chloride dialyzes from Solution A to Solution B.
- D Initially, the two solutions have the same total solute concentration.
- E The volume of Solution A will increase and the volume of Solution B will decrease.

61 Blood plasma has a total solute concentration of about 0.28 M. What will happen to a blood cell that is placed in a 0.14 M solution of CH₃CH₂OH ?

Dr. Hovt

B hemolysis (the cell will swell and burst)

D the cell will become more acidic

- A crenation (the cell will shrivel)
- C the cell will become more basic
- E nothing; the solution is isotonic
- 62 Calculate the pH of a solution with $[H^+] = 0.02$ M. A 5 x 10⁻¹³ B 0.02 C 0.95 D 1.0 E 1.7
- 63 Which of the following solutions has the **highest pH**?

A 1.0 M HCl	B 0.01 M HCl
C 1.0 M CH ₃ COOH	D 0.01 M CH ₃ COOH

- 64 Which of the following reactions converts ethene into ethane?
 - A an oxidation reaction. C an acid-base reaction. B a precipitation reaction. D a condensation reaction. E a hydrogenation reaction.
- 65 Which of the reaction equations below represents the **dissociation of a weak acid**?
 - A HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq)
 - B H₂O (1) \rightleftharpoons H⁺ (aq) + OH⁻ (aq)
 - $C H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$
 - D 2 H₂O (g) \rightarrow 2 H₂ (g) + O₂ (g)
 - E NH₃ (aq) + HC₂H₃O₂ (aq) \rightleftharpoons NH₄⁺ (aq) + C₂H₃O₂⁻ (aq)

66 Four of the following five compounds are isomers with the formula C_5H_{10} . Which compound does NOT have this formula?


B cis-2-pentene C 2-methyl-1-butene A pentane

D methylcyclobutane E 1,2-dimethylcyclopropane

67 Write the equation for the **combustion of C_5H_{10}**, balanced with lowest possible whole-number coefficients. What is the coefficient of oxygen?

A 5 **B** 7 C 10 D 15 E 20

Solution A: Solution B: 0.1 M NaCl 0.05 M NaCl 0.05 M glucose 0.1 M glucose

Fall 2015

University of Loui	isville	Chem 105	Dr. Hoyt	Fall 2015		
Final Exam	December 12					

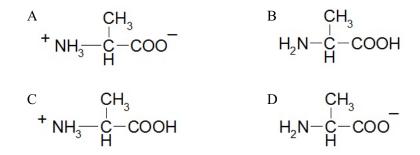
68 Which of the following aqueous chemical species is a diprotic acid?

A H_2SO_3 B HSO_3^- C SO_3^{2-} D SO_2 E CH_2S

69 Which of the following changes to the conditions of a reaction would make the reaction slower?

- A increasing the activation energy of the reaction
- C removing the products as they form
- E vigorously stirring the reaction mixture

B adding an appropriate catalyst


D heating the reaction mixture

71 A certain reaction is endothermic, but has a low activation energy. Which graph best represents this reaction?

on all 5 graphs.)

70 Which of the graphs shown at the right represents the smallest difference in energy between **reactants and products**? (Assume the y-axis scale is the same

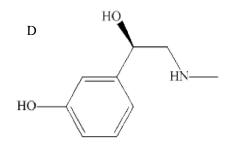
72 Below are four possible forms of the amino acid alanine. Which structure shows how alanine would appear under acidic conditions?

73 Calculate the molar mass of nitrogen dioxide. (Hint: first write the formula.)

A 30.01 g/mol B 44.02 g/mol C 46.01 g/mol D 90.69 g/mol E 149.38 g/mol

74 Gatorade contains 14 g of sugar in each 240-mL serving. What is this concentration, expressed as % (w/v)? (Given: % w/v = g solute/100 mL solution.)

A 0.058 % B 5.8 % C 14 % D 17 % E 34 %


75 Unsweetened cranberry juice has a pH of approximately 2.5, while unsweetened apple juice has a pH of approximately 3.5. Which statement correctly compares the acidity of these two juices?

- A Cranberry juice is acidic, while apple juice is basic.
- B Cranberry juice is 70% as acidic as apple juice.
- C Cranberry juice is about 1.4 times as acidic as apple juice.
- D Cranberry juice is about twice as acidic as apple juice.
- E Cranberry juice is about ten times as acidic as apple juice.

	of Louisvi		Chem 105	Dr. Ho	yt Fall 2015			
Final Exam	Ľ	ecember 12						
					mately 0.6 g/mL. When one fluid ounce ntration of sugar, in g/mL?			
A	0.04 g/mL	B 0.6 g/mL	C 9.6 g/mL	D 16 g/mL	E 26.6 g/mL			
compensa	77 If the pH of your blood starts to become too low, what physiological response can help your body to compensate?A Holding the breath to retain more carbon dioxide							
E	-		take in less oxyg					
C			expel more carbo					
L E			y to produce more he urine to make		oncentrated			
L			ne unne to make		oncentrated			
	-	conjugate aci						
A	H ₂ S	B HS⁻	C S ^{2–}	D HSO ₄ ⁻	$E H_2SO_4$			
	compound CO	D_2 , what is the B -1	charge on the O a C δ–	tom? Choose the D δ+	e best answer. E +2			
A	n of the follow iron(II) carb calcium pho	onate B po	pounds is soluble otassium sulfide lver bromide		phosphate			
	n of the follow CH ₃ OH	ving substances B C	s would have the l $_{2}H_{6}$ C C ₆	highest boiling p H ₁₃ OH	oint? D C ₇ H ₁₆			
	n substance w CH ₃ OH	ould have the g B C	greatest solubility ₂ H ₆ C C ₆	v in water ? H ₁₃ OH	D C ₇ H ₁₆			
83 What i	s the normal.	neutral bondin	g pattern for a nit	rogen atom?				
		lone pairs	6 F	- 8				
		-	-					
Α	1	0						
В	1	3						
С	2	2						
D	3	1						

E 4 0

University of Lo	uisville	Chem 105	Dr. Hoyt	Fall 2015
Final Exam	December 12			
Use the structures	s A-D at the side of	f the page to answer	the next few questions.	0
	nay use the letter c · ''more than one oj		correct structure, or yo	nu A
84 Which compo	ound's molecular fo	ormula has exactly 21	l carbon atoms?	0
85 Which molecu	ule contains a phen	ol functional group?		
86 Which examp	le is not capable of	f hydrogen bonding a	as a pure substance?	B N OH
87 Which molect	ule includes a prim	ary alcohol?		
88 Which substan	nce is subject to hy	dration?		CI
89 Which substat	nce is a steroid ?			
90 Which substa	nce contains a cart	oonyl group?		c
Remember that in	each question on t	this page, "E. More	than one of these" is a	ОН

Univers	ity of Louisville	Chem 1	05 D	r. Hoyt	Fall 2015		
Final Exa	m December	r 12					
Multiple Choice, Continued.							
91 As an animal digests food containing large biomolecules, enzymes in the gut break down the large molecules (such as polysaccharides and polypeptides) into smaller molecules, so they can be absorbed by the body. What is the best term for this type of reaction?							
	A condensation	B hydrolysis	C precipitation	D hydration	E dissociation		
 92 In the reduction of a ketone functional group with H₂, what product is formed? (Hint: sketch the reaction!) A a primary alcohol B a secondary alcohol C a ketone D a carboxylic acid E an alkane 							

The next group of questions will use the following list of biomolecules. In each case, choose the **best** answer.

A proteins	B lipids
C mono- and di-saccharides	D polysaccharides
E steroids	

93 These substances can be "denatured" by high temperatures, agitation, etc.

94 Structural tissues in plants are made up of these substances.

95 These molecules are made up of long-chain carboxylic acids attached to a glycerol residue.

96 These molecules contain peptide linkages.

97 Vertebrate sex hormones typically are in this category.

98 Enzymes belong to this category.

99 Vegetable oil belongs in this category.

100 The molecule shown at right belongs in this category.

0 H₂N—CH—C—OH СH₃

Before you go-please check:

• Did you do the hydrogen-bonding sketch in Part II (before Question 51)?

• Did you record answers for all items 1-100, both on your Scantron (to turn in) and on your exam booklet to take and score against the posted key on Monday?

• Did you write your name and section (day/eve/online) on your Scantron card?

Have a terrific break! Check Blackboard for office hours next week if you want to review your exam.