MATH 301
 TEST 4 (sample)

Spring 2017
Dr. Grzegorz Kubicki
Work on it before the class meeting on April 06.

1. (15 pts) Let R be a region bounded by the lines $y=x, y=x+2, y=-x$, and $y=-x+2$. Use the change of variables $x=u+v, y=u-v$ to evaluate the integral $\iint(x-y) e^{x+y} d y d x$. R
2. (10 pts) Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=169$ that lies above the plane $\mathrm{z}=12$.
3. (12 pts) Use an unoriented line integral to evaluate the mass of the wire in the shape of the semicircle $x^{2}+y^{2}=1(y \geq 0)$ with the mass density $f(x, y)=2 y$.
4. (13 pts) Use spherical coordinates to evaluate $\iiint_{E} z^{2} d V$, where the solid region E lies in the first octant inside the sphere of radius 2 centered at the origin.
5. (20 pts)
(a) Justify that the vector field $\mathbf{F}(x, y)=\left(9 x^{2} y^{2}+x\right) \mathbf{i}+\left(6 x^{3} y-y^{2}\right) \mathbf{j}$ is conservative.
(b) Find its potential $f(x, y)$.
(c) Use the Fundamental Theorem of Line Integrals to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any smooth curve in the plane between the points $(0,0)$ and $(1,6)$.
6. (10 pts) An object occupies the solid region is the first octant bounded by the coordinate planes, the planes $x=2, y=2$, and by the plane $z=5-y$. Its mass density at (x, y, z) is given by $f(x, y, z)=1+z^{2}$. Express its mass by a triple integral. Do not evaluate it.
7. (10 pts) Find the work done by the force $\mathbf{F}=-\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}$ over the semicircle $\mathbf{r}=2 \cos \mathrm{t} \mathbf{i}+2 \sin \mathrm{t} \mathbf{j}, \quad 0 \leq \mathrm{t} \leq \pi$.
8. (15 pts) Use the cylindrical coordinates to prove that the volume of a cone with the base of radius R and height h is $\mathrm{V}=(1 / 3) \pi \mathrm{h} \mathrm{R}^{2}$.
