Practice Problems for Final Exam

Know and understand the vocabulary, concepts and theory of the 5 laboratory experiments

1. (10 pts) The following data were obtained for the standardization of HCl with NaOH :
(From Experiment \#1)
Initial volume of $\mathrm{HCl}=0.03 \mathrm{~mL}$
Final volume of $\mathrm{HCl}=35.18 \mathrm{~mL}$
Initail volume of $\mathrm{NaOH}=0.15 \mathrm{~mL}$
Final volume of $\mathrm{NaOH}=54.12 \mathrm{~mL}$
Calculate the concentration of HCl if the NaOH concentration is 0.1523 M
2. (? pt.) In the back titration of aspirin, an excess amount of NaOH was reacted with aspirin and the excess was then back titrated with HCl . Suppose a 0.4567 g sample of aspirin was reacted with 43.012 mL of 0.1345 M NaOH and back titrated with 12.15 mL of 0.1124 M HCl to reach the endpoint. (From experiment \#1)

Calculate the weight percent of aspirin in the sample.

Calculate the mg of Aspirin in a tablet if the mass of one tablet is 0.3750 g .
3. (? Pts) The absorbance of four standard Fe^{2+} solutions were measured to obtain a calibration curve that gave the following best fit line (from Experiment \#5)
$\mathrm{y}=0.14432 \mathrm{x}+0.001434$
A vitamin tablet was dissolved and diluted to 250 mL in a volumetric flask. Then 20 mL of that solution was removed and diluted to 100 mL in a volumetric flask. The absorbance of this solution was measured to be 0.853 .

Calculate the concentration of $\mathrm{Fe}(\mu \mathrm{g} / \mathrm{mL})$ in the 100 mL volumetric flask.

Calculate the $\mathbf{m g} \mathbf{F e}^{\mathbf{2 +}}$ per vitamin tablet.
4. (? Pts.) From each pair below, circle the choice that corresponds to higher energy.
$\lambda=$ wavelength (From experiment \#4)
$v=$ frequency
a. $\lambda=250 \mathrm{~nm}$
or
$\lambda=600 \mathrm{~nm}$
b. $v=10^{16} \mathrm{~Hz}$
or
$v=10^{12} \mathrm{~Hz}$
c. Infrared Radiation
or
X- rays
d. Ultraviolet Radiation
or
Visible light
e. microwaves
or
gamma rays
5. (? pts.) An EDTA solution was standardized with a known CaCO_{3} solution. $0.2343 \mathrm{~g}^{\text {of } \mathrm{CaCO}_{3} \text { was }}$ dissolved, transferred to a 250 mL volumetric flask, and filled to the mark. 25.00 mL of this solution was placed in an Erlenmeyer flask using a transfer pipet. 22.35 mL EDTA was required to titrate the CaCO_{3} solution to its endpoint. (From experiment \#2)

Calculate the concentration (in ppm) of the EDTA solution.
6. (?pts.) Water hardness is determined by the amount of Ca^{2+} and Mg^{2+} in the water. A known EDTA solution can be used to titrate water and determine its water hardness since EDTA forms complexes with metal cations. Suppose it takes 22.54 mL of a 0.01222 M EDTA solution to reach the endpoint when titrating a 25.00 mL sample of water. Assuming that only Ca^{2+} and Mg^{2+} exist in the water solution, calculate the water hardness level (you know the units). (From experiment \#2)
7. (? pts.) Balance the following reaction and answer the questions: (from experiment \#3)

$$
\mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+} \quad+\quad \mathrm{Fe}^{3+}
$$

7a. Label the oxidizing agent
7 b . Label the reducing agent.
7c. What was the total number of electrons transferred?
8. If 32.44 mL of a $0.03433 \mathrm{M} \mathrm{MnO}_{4}{ }^{-}$solution was used to titrate the Fe^{2+} in a sample that had a mass of 0.8834 g , then what is the mass of Fe^{2+} in the sample? (From experiment \#3)

8a. What is the $\% \mathrm{wt}$. of Fe^{2+} in the sample?
9. (?pts.) An FM station broadcasts classical music at $93.5 \mathrm{MHz}\left(1 \mathrm{MHz}=10^{6} \mathrm{~Hz}\right)$. Find the wavelength in meters (m), nanometers (nm) and angstroms (\AA) of these radio waves. (From experiment \#4)
m \qquad nm \qquad Å \qquad
10. (?pts) Ozone absorbs light having wavelengths of 220 nm thus protecting organisms on the Earth's surface from this high-energy UV radiation emitted from the sun. What is the frequency and energy of one of these photons? What is the energy of a mole ($\mathrm{kJ} / \mathrm{mol}$) of these photons? (From experiment \#4)
11. (?pts) The ground state electron configuration of Li is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$. The energy required to excite the valence electron in Li to the configuration of $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{0} 2 \mathrm{p}^{1}$ is $178.5 \mathrm{KJ} / \mathrm{mole}$. When the molecule relaxes it will emit photons of the same energy. Calculate the wavelength (in nm), and frequency (in Hz) of the emitted photons? (From experiment \#4)

11 (?pts.) Balance the following redox reactions:(From experiment \#3)

$$
\begin{array}{ll}
\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow & \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \\
\mathrm{Cu} \\
+ & \mathrm{HNO}_{3} \longrightarrow \\
\left.\mathrm{Cu}_{2} \mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow & \mathrm{Cr}^{3+}+\mathrm{CO}_{2}
\end{array}
$$

12. (?pts.) What value of absorbance corresponds to 45.0% T? (From experiment \#5)

If a 0.100 M solution exhibits $45.0 \% \mathrm{~T}$ at some wavelength, what will be the $\% \mathrm{~T}$ for a 0.200 M solution of the same substance at the same wavelength?
13. What is the molarity of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ if its concentration is $85 \%(\mathrm{w} / \mathrm{w})$ and its specific gravity is $1.48 \mathrm{~kg} / \mathrm{L}$? (From experiment \#1)
14.) Correctly spell the name of the teaching assistant for your Chemistry 208 lab section

