CHEM 202 - 01,02,03,04

EXAM 2, Fall 2015

Signature_____

SCORED GRADE (75 max.)_____

CIRCLE YOUR COURSE SECTION IN THE LIST BELOW

202-01 M 12-12:50 202-02 T 12-12:50 202-03 W 1-1:50 202-04 W 12-12:50

Section 1. TRUE OR FALSE (3 pts × 10 = 30 pts)

Indicate whether each statement is True (T) or False (F). Be certain to T or F is clearly indicated.

1. For a collision of reactants to result in a reaction, the particles must collide with the correct orientation and enough energy to overcome the activation energy of the reaction.

- 2. For a spontaneous reaction, $\Delta H_{univ} = 0$ and $\Delta S_{univ} > 0$.
- _____ 3. In a multi-step reaction, an intermediate appears on the reaction energy diagram as an energy minimum.
- 4. An endothermic reaction that results in an increase of entropy of the system is always endergonic.
- _____ 5. A reaction with a rate constant of $3.44 \times 10^{-4} \,\text{M}^{-1} \,\text{s}^{-1}$ is first-order reaction.
- 6. The rate of a first-order reaction always decreases as the reaction progresses.

7. For a reaction under non-standard conditions $Q \neq 1$ and $\Delta G \neq \Delta G^{\circ}$.

- 8. For a reaction with ΔH° = 25.2 kJ/mol and ΔS° = 135 J/mol K, the reaction is spontaneous at T < 187 K.
- 9. The sign of ΔS° for the condensation of any gas is positive.
- 10. At equilibrium, $\Delta G = 0$ and the rate of the forward reaction equals the rate of the reverse reaction.

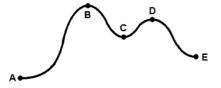
Section 2. OPEN ANSWER (5 pts × 4 = 20 pts)

Write the correct answer on the line provided. Be certain to clearly indicate your answer.

1. Consider the following reaction:

$$2 \operatorname{CH}_3\operatorname{OH}_{(g)} + 3 \operatorname{O}_{2(g)} \rightarrow 2 \operatorname{CO}_{2(g)} + 4 \operatorname{H}_2\operatorname{O}_{(g)}$$

- a. Which molecule has the largest standard molar entropy?
- b. What is the sign of ΔS° for the reaction?


- 2. Write a reaction quotient Q for the following reactions:
 - a. 2 $HI_{(g)} \xrightarrow{\rightarrow} H_{2(g)} + I_{2(g)}$
 - b. $CaCO_{3(s)} \xrightarrow{\rightarrow} CaO_{(s)} + CO_{2(g)}$
- 3. Given the following rate law, fill in the blanks below. Rate = $k[A]^2[B]$

When the concentration of B is doubled, the rate of the reaction ______

The reaction is ______ order in A.

The rate constant has units of ______.

4. Use the points A – E on the Reaction Energy Diagram to the answer the following questions:

What point represents the reactants?

What point represents the reaction intermediates?

What two points are used to determine $\Delta H_{\text{rxn}}?$

What two points are used to determine $E_{a,fwd}$ of the second step?

What two points are used to determine E_{a,rev} of the first step?

Section 3. MULTIPLE CHOICE (5 pts × 5 = 25 pts)

Circle the correct answer. Be certain to clearly indicate your answer.

1. From the information provided to the right, calculate ΔG°_{rxn} at 25 °C for: 2 SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}

Standard Values						
$\Delta H_{f}^{\circ} SO_{2(g)}$	-297 kJ/mol					
$\Delta H_{f}^{\circ} O_{2(g)}$	0 kJ/mol					
$\Delta H_{f}^{\circ} SO_{3(g)}$	-396 kJ/mol					
S° SO _{2(g)}	248 J/mol K					
S° O _{2(g)}	205 J/mol K					
S° SO _{3(g)}	257 J/mol K					

+142 kJ/mol	+385 kJ/mo	+11 kJ/mol	-142 kJ/mol
-11 kJ/mol	l -385 kJ/mol	-254 kJ/mol	+254 kJ/mol
	-505 (5/110)	-234 (3)1101	1234 KJ/1101

2. Use the information provided on the right to calculate the boiling point of CS₂.

			Standard V	alues
			ΔH_{vap}°	29 kJ/mol
			ΔG_{vap}°	3.3 kJ/mol
			ΔS_{vap}°	87 J/mol K
29 °C	8.8 °C	96 °C	3	30 °C
60. °C	250 °C	100. °C	1	20 °C

3. Using the information provided for question 2, what is the equilibrium vapor pressure of CS2 at 25.0 °C?

0.0020 atm	3.8 atm	0.0075 atm	0.26 atm
0.0 atm	0.052 atm	0.35 atm	2.6 atm

4. The following reaction has a rate constant (k) of 0.68 $M^{-1}s^{-1}at500$ K. The reaction proceeds via a single, elementary step. If the initial concentration of $NO_{2(g)}$ is 0.043 M, what concentration of $NO_{2(g)}$ remains after 2.5 minutes? 2 $NO_{2(g)} \rightarrow NO_{(g)} + NO_{3(g)}$

6.8 × 10 ⁻³ M	5.2 × 10 ⁻³ M	1.4 × 10 ⁻³ M	7.7 × 10 ⁻³ M
8.2 × 10 ⁻³ M	3.8 × 10 ⁻³ M	4.4 × 10 ⁻³ M	2.5 × 10 ⁻³ M

5. The decomposition of $H_{(g)}$ to $H_{2(g)}$ and $I_{2(g)}$ proceeds with a rate constant (k_1) of $9.51 \times 10^{-9} \text{ M}^{-1} \text{ s}^{-1} \text{ at } 500$. K and a rate constant (k_2) of $1.10 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1} \text{ at } 600$. K. Calculate the activation energy for this reaction.

152 kJ/mol	163 kJ/mol	176 kJ/mol	144 kJ/mol
139 kJ/mol	128 kJ/mol	108 kJ/mol	112 kJ/mol

THIS PAGE CAN BE REMOVED FROM THE EXAM

USE THE BACK FOR SCRATCH PAPER IF NEEDED

1 H Hydrogen																	2 He Helium
1.00794																	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.941	9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39,0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50,9415	Chromium 51,9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58,6934	Copper 63.546	Zinc 65.39	Gallium 69,723	Germanium 72.61	Arsenic 74,92160	Selenium 78,96	Bromine 79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92,90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138,9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		(=*/)	(=)	()
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						
(223)	(220)	(227)	(201)	(202)	(203)	(202)	(203)	(200)	(209)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
				Cerium 140,116	Praseodymium 140,90765	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.92534	Dysprosium 162.50	Holmium 164,93032	Erbium 167.26	Thulium 168,93421	Ytterbium 173.04	Lutetium 174.967
				90	91	92	93	94	95	96	97	98	99	100	108.93421	102	103
				Th	Pa	Ū	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

The Periodic Table of the Elements

 $S = k \ln W$

- $k = 1.381 \times 10^{-23} \text{ J/K}$
- R = 8.314 J/mol K

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $K = e^{-\Delta G^{\circ}/RT}$ $\ln \frac{[A]_{0}}{[A]_{t}} = akt$

 $\frac{1}{[A]_t} - \frac{1}{[A]_0} = akt$ $t_{1/2} = \frac{\ln 2}{ak}$ $t_{1/2} = \frac{1}{ak} [A]_0$ $k = A e^{-E_a/RT}$ k = E (1 - 1)

$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

 $\frac{[\mathsf{A}]_0}{[\mathsf{A}]_t} = \mathrm{e}^{akt}$