| CHEM 2   | 202H – 12,13,1                                    | 14                                                | Name                                              |                     |                         |  |  |
|----------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------|-------------------------|--|--|
| EXAM 2   | , Spring 2016                                     |                                                   | Signature                                         |                     |                         |  |  |
|          |                                                   |                                                   |                                                   |                     |                         |  |  |
|          |                                                   |                                                   |                                                   |                     | SCORED GRADE (100 max.) |  |  |
|          |                                                   | CIRCLE YC                                         | OUR COURSE SE                                     | CTION IN THE        | LIST BELOW              |  |  |
|          | 202-12                                            | W 10-12:50                                        | 202-13                                            | W 2-2:50            | 202-14 W 3-3:50         |  |  |
|          |                                                   |                                                   |                                                   |                     |                         |  |  |
| Section  | 1. Entropy, E                                     | nthalpy, and Gibb's                               | Energy under St                                   | tandard Cond        | itions (16 pts)         |  |  |
| 1. Ident | ify the compo                                     | ound in each series w                             | ith the largest S                                 | S°.                 |                         |  |  |
| Α.       | Hg(I)                                             | Br <sub>2(I)</sub>                                | CCI <sub>4(I)</sub>                               | CS <sub>2</sub> (I) |                         |  |  |
|          |                                                   |                                                   |                                                   |                     |                         |  |  |
| В.       | CH <sub>3</sub> CH <sub>2</sub> OH <sub>(g)</sub> | CH <sub>3</sub> CH <sub>2</sub> OH <sub>(I)</sub> | CH <sub>3</sub> CH <sub>2</sub> OH <sub>(s)</sub> | CH₃CH₂C             | DH <sub>(aq)</sub>      |  |  |
|          |                                                   |                                                   |                                                   |                     |                         |  |  |

For questions 2 – 3, identify the reaction as: A) Spontaneous at all T; B) Non-spontaneous at all T; C) Spontaneous at low T, but non-spontaneous at high T; or D) Non-spontaneous at low T, but spontaneous at high T.

2.  $2 C_4 H_{10(g)} + 13 O_{2(g)} \rightarrow 8 CO_{2(g)} + 10 H_2O_{(g)}$  (HINT: This is a combustion reaction)

3. The sublimation of CO<sub>2</sub>.

\_

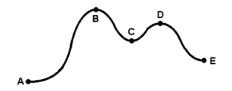
4. Select the thermodynamic value on the left with the appropriate term on the right. (NOTE: not all terms on the right will be used, a term may be used more than once)

|                        | A. endothermic |
|------------------------|----------------|
| ΔG <sub>sys</sub> = 0  | B. exothermic  |
| ΔS <sub>univ</sub> < 0 | C. endergonic  |
| $\Delta S_{surr} > 0$  | D. exergonic   |
|                        |                |

E. equilibrium

### Section 2. Entropy, Enthalpy, and Gibb's Energy under General Conditions (14 pts)

5. Write a reaction quotient for the following reactions:


- A. 2 NO<sub>(g)</sub> + 2 Cl<sub>2(g)</sub>  $\rightarrow$  2 Cl<sub>2</sub>O<sub>(g)</sub> + N<sub>2(g)</sub>
- B.  $PbSO_{4(s)} \rightarrow Pb^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$

6. Select the thermodynamic condition on the left with the appropriate term on the right. (NOTE: Some terms may be used more than once and some terms may not be used at all.)

| Q = K   | A. standard conditions |
|---------|------------------------|
| Q/K > 1 | B. spontaneous         |
| Q = 1   | C. non-spontaneous     |
| Q < K   | D. equilibrium         |

#### Section 3. Fundamentals of Reaction Mechanisms (12 pts)

7. Use the following Reaction Energy Diagram to the answer the following questions:



| What is the spontaneity of this reaction under standard conditions?         |  |
|-----------------------------------------------------------------------------|--|
| What point(s) represents the transition state(s)?                           |  |
| How many chemical steps are involved in this reaction?                      |  |
| What value can be calculated by subtracting the energy at A from that at B? |  |
|                                                                             |  |

8. For the elementary reaction A + B  $\rightarrow$  products, what two conditions must be met for the reaction to occur?

#### Section 4. Rates and Rate Laws (10 pts)

9. Consider the following 2 step-reaction:

 $A_{(aq)} + H_2O_{(I)} \rightarrow B_{(aq)} + C_{(aq)}$ 

 $B_{(aq)} \rightarrow D_{(aq)}$ 

- A. Write the overall reaction.
- B. Identify any intermediates in the reaction.
- C. Write the rate law assuming the first step is the slow step.
- D. If the first step is fast and reversible and that the second step is slow, the rate law is:

$$rate = \frac{k_1 k_2 [A]}{k_{-1} [C] + k_2}$$

Under what conditions would this reaction appear first-order overall?

### Section 5. General Equilibrium (10 pts)

10. The following reaction is at equilibrium. Indicate if the following changes to the system will:A) shift reaction towards products; B) shift reaction towards reactants; or C) no shift the equilibrium.

 $HNO_{3(I)} + CIF_{(g)} \rightarrow CIONO_{2(g)} + HF_{(g)}$ 

| A. Addition of $HF_{(g)}$                 |  |
|-------------------------------------------|--|
| B. Addition of $HNO_{3(I)}$               |  |
| C. Increasing P by addition of $N_{2(g)}$ |  |
| D. Increasing P by reducing reactor V     |  |
|                                           |  |

# Section 6. Calculations (30 pts). YOU MUST SHOW YOUR WORK FOR CREDIT.

11. The degradation of SO<sub>2</sub>Cl<sub>2</sub> occurs via a single elementary step with a rate constant of  $2.2 \times 10^{-5}$  s<sup>-1</sup>. If the initial concentration of SO<sub>2</sub>Cl<sub>2</sub> is 0.0040 M, what is the concentration of SO<sub>2</sub>Cl<sub>2</sub> after 1.00 hour?

 $SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$ 

12. The rate constant for 2 A  $\rightarrow$  B is 1.8 × 10<sup>-2</sup>  $M^{-1} s^{-1}$ . Calculate the half-life when the concentration of A is 0.35 M.

13. The standard Gibb's energy ( $\Delta G^{\circ}$ ) for the following reaction at 298 K is -141.8 kJ/mol.

 $\mathsf{COCl}_{2(g)} \ + \ \mathsf{H}_2\mathsf{O}_{(l)} \ \textbf{\rightarrow} \ \mathsf{CO}_{2(g)} \ + \ 2 \ \mathsf{HCl}_{(g)}$ 

What is  $\Delta G$  for the reaction 298 K when:  $P_{COCI2} = 0.3$  atm;  $P_{CO2} = 0.6$  atm; and  $P_{HCI} = 0.2$  atm.

14. The equilibrium vapor pressure of  $H_2O$  at 20 °C is 2.30 x  $10^{-2}$  atm. Calculate the standard Gibb's energy ( $\Delta G^\circ$ ) for the vaporization of  $H_2O$  at this temperature. (HINT: How is the EVP related to K?)

 $H_2O_{(I)} \rightarrow H_2O_{(g)}$ 

15. At 425 °C, the  $K_p$  for the following reaction is  $4.18 \times 10^{-9}$ . At this temperature, if the initial HBr pressure is 1.5 atm, what is the partial pressure of H<sub>2</sub> at equilibrium?

 $2 \text{ HBr}_{(g)} \rightarrow \text{ H}_{2(g)} + \text{ Br}_{(g)}$ 

Section 7. Essay (8 pts). Answer in paragraph form comprised of 4-6 full sentences.

16. The combustion of methane gas is a spontaneous process, but the reaction requires a spark to ignite the gas. Explain this observation in terms of *thermodynamics* and *kinetics*.

# THIS PAGE CAN BE REMOVED FROM THE EXAM

### USE THE BACK FOR SCRATCH PAPER IF NEEDED

| The Periodic Table of the Elements  |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------|---------------------|--------------------|---------------------|----------------------|---------------------|--------------------|-------------------|--------------------------------|---------------------|-------------------------|---------------------|------------------------|-----------------|
| 1                                   |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        | 2               |
| Hydrogen                            |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        | Helium          |
| 1.00794<br>3                        | 4                                                                                                                                                                                                            | 1                      |                        |                     |                     |                    |                     |                      |                     |                    |                   | 5                              | 6                   | 7                       | 8                   | 9                      | 4.003           |
| Li                                  | Be                                                                                                                                                                                                           |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   | В                              | С                   | Ν                       | 0                   | F                      | Ne              |
| Lithium<br>6.941                    | Beryllium<br>9.012182                                                                                                                                                                                        | -                      |                        |                     |                     |                    |                     |                      |                     |                    |                   | Boron<br>10.811                | Carbon<br>12.0107   | Nitrogen<br>14.00674    | Oxygen<br>15.9994   | Fluorine<br>18.9984032 | Neon<br>20.1797 |
| 11<br>Na                            | 12<br>Mg                                                                                                                                                                                                     |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   | 13<br>Al                       | 14<br>Si            | 15<br>P                 | 16<br><b>S</b>      | 17<br>Cl               | 18<br>Ar        |
| Sodium<br>22.989770                 | Magnesium<br>24.3050                                                                                                                                                                                         |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   | Aluminum<br>26.981538          | Silicon<br>28.0855  | Phosphorus<br>30.973761 | Sulfur<br>32.066    | Chlorine<br>35.4527    | Argon<br>39.948 |
| 19                                  | 20                                                                                                                                                                                                           | 21                     | 22                     | 23                  | 24                  | 25                 | 26                  | 27                   | 28                  | 29                 | 30                | 31                             | 32                  | 33                      | 34                  | 35                     | 36              |
| K<br>Potassium                      | Ca<br>Calcium                                                                                                                                                                                                | Sc<br>Scandium         | Ti<br>Titanium         | V<br>Vanadium       | Cr                  | Manganese          | Fe                  | Co<br>Cobalt         | Ni<br>Nickel        | Cu                 | Zn                | Gallium                        | Germanium           | As                      | Selenium            | Bromine                | Krypton         |
| 39.0983<br>37                       | 40.078<br>38                                                                                                                                                                                                 | 44.955910<br><b>39</b> | 47.867<br>40           | 50.9415<br>41       | 51.9961<br>42       | 54.938049<br>43    | 55.845<br>44        | 58.933200<br>45      | 58.6934<br>46       | 63.546<br>47       | 65.39<br>48       | 69.723<br>49                   | 72.61<br>50         | 74.92160<br>51          | 78.96<br>52         | 79.904<br>53           | 83.80<br>54     |
| Rb                                  | Sr                                                                                                                                                                                                           | Y                      | Zr                     | Nb                  | Mo                  | Tc                 | Ru                  | Rh                   | Pd                  | Ag                 | Cd                | In                             | Sn                  | Sb                      | Te                  | I                      | Xe              |
| Rubidium<br>85.4678                 | Strontium<br>87.62                                                                                                                                                                                           | Yttrium<br>88.90585    | Zirconium<br>91.224    | Niobium<br>92.90638 | Molybdenum<br>95.94 | Technetium<br>(98) | Ruthenium<br>101.07 | Rhodium<br>102.90550 | Palladium<br>106.42 | Silver<br>107.8682 | Cadmium 112.411   | Indium<br>114.818              | Tin<br>118.710      | Antimony<br>121.760     | Tellurium<br>127.60 | Iodine<br>126.90447    | Xenon<br>131.29 |
| 55                                  | 56                                                                                                                                                                                                           | 57                     | 72                     | 73                  | 74                  | 75                 | 76                  | 77                   | 78                  | 79                 | 80                | 81                             | 82                  | 83                      | 84                  | 85                     | 86              |
| Cesium                              | Barium                                                                                                                                                                                                       | La<br>Lanthanum        | Hafnium                | Ta<br>Tantalum      | W<br>Tungsten       | Re<br>Rhenium      | Os<br>Osmium        | Ir<br>Iridium        | Pt<br>Platinum      | Au<br>Gold         | Hg<br>Mercury     | Tl<br>Thallium                 | Pb<br>Lead          | Bi<br>Bismuth           | Po<br>Polonium      | At<br>Astatine         | Rn<br>Radon     |
| 132.90545<br>87                     | 137.327<br>88                                                                                                                                                                                                | 138.9055<br>89         | 178.49<br>104          | 180.9479<br>105     | 183.84<br>106       | 186.207<br>107     | 190.23<br>108       | 192.217<br>109       | 195.078<br>110      | 196.96655          | 200.59            | 204.3833<br>113                | 207.2<br>114        | 208.98038               | (209)               | (210)                  | (222)           |
| Fr                                  | Ra                                                                                                                                                                                                           | Ac                     | Rf                     | Db                  | Sg                  | Bh                 | Hs                  | Mt                   |                     |                    |                   |                                |                     |                         |                     |                        |                 |
| Francium<br>(223)                   | Radium<br>(226)                                                                                                                                                                                              | Actinium<br>(227)      | Rutherfordium<br>(261) | Dubnium<br>(262)    | Seaborgium<br>(263) | Bohrium<br>(262)   | Hassium<br>(265)    | Meitnerium<br>(266)  | (269)               | (272)              | (277)             |                                |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        | 58                  | 59                  | 60                 | 61                  | 62                   | 63                  | 64                 | 65                | 66                             | 67                  | 68                      | 69                  | 70                     | 71              |
|                                     | Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb                                                                                                                                                                       |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     | Lu                      |                     |                        |                 |
|                                     | Cerium Prasedymium Nondymium Prancium Europium Gadolnium Terrus Gadolnium Terrus Tutulin Ytterbium   140.116 140.90765 144.24 (145) 150.36 151.964 157.25 158.92534 162.50 164.93032 167.26 168.93421 173.04 |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                | Lutetium<br>174.967 |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        | 90<br>Th            | 91<br>Da            | 92                 | 93                  | 94                   | 95                  | 96<br>C            | 97<br>DL          | 98                             | 99<br>E             | 100                     | 101                 | 102<br>No              | 103             |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                | Lawrencium          |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        | 232.0381            | 231.03588           | 238.0289           | (237)               | (244)                | (243)               | (247)              | (247)             | (251)                          | (252)               | (257)                   | (258)               | (259)                  | (262)           |
| S = k                               | InW                                                                                                                                                                                                          |                        |                        |                     |                     |                    |                     |                      |                     | 1                  |                   | 1                              |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     | [A] <sub>t</sub>   |                   | 1<br>[A] <sub>0</sub>          | = ak                | ct                      |                     |                        |                 |
| k = 1.3                             | 381 ×                                                                                                                                                                                                        | 10 <sup>-23</sup> 、    | J/K                    |                     |                     |                    |                     |                      |                     | $[\Lambda]_t$      | I                 | <b>[~]</b> 0                   |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    | In 2              |                                |                     |                         |                     |                        |                 |
| <i>R</i> = 8.                       | 314 J                                                                                                                                                                                                        | /mol K                 | ( = 0.0                | 8206                | Latm                | /mol K             |                     |                      | l                   | =                  | ak                |                                |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    | 1                 |                                |                     |                         |                     |                        |                 |
| ∆G =                                | = Δ <i>G</i>                                                                                                                                                                                                 | ° + .                  | RT Ind                 | 2                   |                     |                    |                     |                      | t                   | 1/2 =              | ak [A]            | 1.                             |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        | -                   |                     |                    |                     |                      |                     | $k = \frac{1}{2}$  |                   | 10                             |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     | ~ -                | ۸ ه <sup>-E</sup> | a /RT                          |                     |                         |                     |                        |                 |
| К =                                 | e⁻∆G°                                                                                                                                                                                                        | /RT                    |                        |                     |                     |                    |                     |                      |                     | ~ -                | AC                |                                |                     |                         |                     |                        |                 |
| $k_{2} = E \left( 1 + 1 \right)$    |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
| In [A                               | <u>]</u>                                                                                                                                                                                                     | akt                    |                        |                     |                     |                    |                     |                      | 11                  | $\frac{1}{k_1}$    | =                 | $\overline{R}$ $(\overline{2}$ | $T_{2}^{-}$         | $\overline{T_1}$        |                     |                        |                 |
| [A]                                 | $\ln \frac{[A]_0}{[A]_t} = akt \qquad \qquad$                                         |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
| $\frac{[A]_{o}}{[A]_{t}} = e^{akt}$ |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
| $[A]_t$                             |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |
|                                     |                                                                                                                                                                                                              |                        |                        |                     |                     |                    |                     |                      |                     |                    |                   |                                |                     |                         |                     |                        |                 |

# The Periodic Table of the Elements

Page **6** of **6**