University o	f Louis	sville C	hem 201	Exam 3	Dr. Hoyt	Spring 2013		
March 20, 20	13	7	Drint nama					
		1	Print name _					
		;	Sign name _	C	ircle registration se	ection below		
CIRCLE you	ır recita	ntion section in th	e list below.	•				
Section	A	Fri 10 am, Aiqin	Fang	В	Fri 11 am, Ai	qin Fang		
	C	Tue 3 pm, Rahul	Jain	D	Tue 1 pm, Ra	ıhul Jain		
	F	W 10 am, Neeraj	Kumar	G	G Wed 2 pm, Rahul Jain			
sight (your si point deducti Please clearly	ght and ions.	l mine). Calculat	or policy is name, in ink	in effect. In	fractions will resu of every page. Yo	off and stowed out of alt in confiscation and our score will not be		
	•				ect significant figur	rog)		
All allsweis si	nouna oc	e rounded to the ap	ргорпас рг	ecision (com	ect significant figur	cs.)		
Atomic weigh	its are p	rovided in the Peri	odic Table.	These values	must be used.			
_		outside paper. If y s page and on the	-	•	ou need more scrat proctor.	ch paper than the		
Be certain you	ır answo	ers are clear. If an	answer is no	t clear, it wil	l probably be consi	dered wrong.		
Problems mar worksheets in		h ** in the margin	are directly	from the assi	igned homework (e	either in the text or on		
Use your time	effectiv	vely.		Time is up	at 8:50!!			

		name										
1. [2 pts each] Clearly assign each state	ment as TRUE or FAL	SE. If we can't	tell which you m	nean, it's wrong.								
2 pts each] Clearly assign each statement as TRUE or FALSE. If we can't tell which you mean, it's wrong. **For a given sample of a gas at a fixed volume, pressure increases as temperature increases. "STP" specifies a one-mole sample of a gas at one atmosphere and 0 K. **Both diffusion and effusion are faster at higher temperatures. **If ΔH of a reaction is positive, then the system loses energy. **The ΔH ^θ _t value for F ₂ (g) is zero. The longer the wavelength of a photon, the greater its energy. **The melting of ice is exothermic. The 4d subshell (sublevel) can hold 10 electrons. A single 4d orbital can hold 10 electrons. **A photon of red light has more energy than a photon of violet light. When an electron in an atom relaxes from n=3 to n=1, a photon is absorbed by the atom. **The s subshell occurs in every shell. **The 2d subshell is not a possible subshell. **The energy of the electron in the n=3 shell of a hydrogen atom is 7.27 × 10 ⁻¹⁹ J. The reverse of an endothermic reaction is always exothermic. 10 pts] Three 5-L flasks (labeled A, B and C) each contain a sample of gas (H ₃ , He or CH ₄ , respectively) at K and 1 atm. For each of the following quantities or values, circle the best choice. owest density: Flask A (H ₂) Flask B (He) Flask C (CH ₄) all same greatest mass: Flask A (H ₂) Flask B (He) Flask C (CH ₄) all same greatest mass: Flask A (H ₂) Flask B (He) Flask C (CH ₄) all same greatest average molecular speed: Flask A (H ₂) Flask B (He) Flask C (CH ₄) all same												
"STP" specifies a one-mo	ole sample of a gas at o	one atmosphere a	and 0 K.									
** Both diffusion and effu	sion are faster at high	er temperatures.										
**If ΔH of a reaction is po	ositive, then the system	n loses energy.										
**The ΔH^0_f value for F_2 (§	g) is zero.											
The longer the wavelength												
**The melting of ice is ex												
The 4 <i>d</i> subshell (sublevel)												
A single 4 <i>d</i> orbital can ho	ld 10 electrons.											
**A photon of red light ha	as more energy than a	photon of violet	light.	e increases. atom. espectively) at all same all same all same all same								
When an electron in an at-	om relaxes from n=3 to	o n=1, a photon	is absorbed by th	e atom.								
**The s subshell occurs in	n every shell.			ed by the atom. × 10 ⁻¹⁹ J. or CH ₄ , respectively) at C (CH ₄) all same C (CH ₄) all same								
**The 2 <i>d</i> subshell is not a	possible subshell.											
		a hydrogen aton	n is $7.27 \times 10^{-19} \text{ J}$	ī .								
			,	respectively) at								
a. lowest density:	Flask A (H ₂)	Flask B (He)	Flask C (CH ₄)	all same								
b. lowest average kinetic energy:	Flask A (H ₂)	Flask B (He)	Flask C (CH ₄)	all same								
c. greatest mass:	Flask A (H ₂)	Flask B (He)	Flask C (CH ₄)	all same								
d. greatest average molecular speed:	Flask A (H ₂)	Flask B (He)	Flask C (CH ₄)	all same								
e. greatest pressure:	Flask A (H ₂)	Flask B (He)	Flask C (CH ₄)	all same								
**3. [10 pts] Write the formation equation include appropriate phase labels on all sp	`	ponding to the Δ	.H ⁰ _f) for HClO ₃ (A	(I). For full credit,								
			rei	minder: phase labels?								

4. **[6] A sample of methane gas is confined in a 1.1 L container at 432 torr and 87 °C. Calculate the number of moles of gas present. Show your work below, and write your final answer in the space provided. (No credit will be earned if the setup is not clearly shown.)

Answer: moles

**5. [6 pts]
$$Pb^{2+}$$
 (aq) + 2 Cl^{-} (aq) $\rightarrow PbCl_{2}$ (s)

A 41.0-mL sample of a solution of 0.237 M Pb(NO₃)₂ is added to 60.0 mL of a solution of 0.250 M NH₄Cl. How many grams of precipitate can be produced, according to the balanced reaction equation above? Show your work below, and write your final answer in the space provided. (No credit will be earned if the setup is not clearly shown.)

Answer: g

6. **(a) [6 pts] Balance the following equation by writing appropriate coefficients into the spaces provided. All reactants and products are shown. (You may use as much scratch space as you like, but please make sure you write your final answers clearly and legibly in the spaces provided.)

Final, graded answer:

$$S_2O_6^{2-} + M^+ + M_2O^- \rightarrow SO_2 + M_3^- + M_2O^-$$

Scratch space (will not be graded):

$$S_2O_6^{2-} + H^+ + IO^- \rightarrow SO_2 + IO_3^- + H_2O$$

(b) [2 pts each] For the reaction provided in part (a), identify:

element reduced element oxidized reductant (reducing agent)

(c) [2 pts] In the reaction provided in part (a), one species is a gas. Which one is it?

			name																
	1 (1A)				THI	E PE	RIO	DIC	TAI	3LE								18 (8A)	
1	1 H 1.008	2 (2A)											13 (3A)	14 (4A)	15 (5A)	16 (6A)	17 (7A)	2 He 4.003	
2	3 Li 6.941	4 Be 9.012	2	4	5	6	7	8	9	10	11	12	5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
3	11 Na 22.99	12 Mg 24.31	3 (3B)	4 (4B)	5 (5B)	(6B)	/ (7B)	8	– (8B) -	10	7 (1B)	12 (2B)	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95	
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3	
6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)	
7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (272)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)	
			5 C 14	e P	r N	ld P	m S	m E	u C	3d	ТЬ	Dy F	57 6 lo E 4.9 16	r T	m Y		'1 .u 5.0		
			9 T 23.	h P	'a i	- 1 -	p P	u A	m C	m	Bk	Cf E	99 10 Es F 52) (2	m M	ld N	lo L	03 .r 62)		

Based on IUPAC 2007 (publ 2009).

Avogadro's number: 6.022×10^{23}

Gases: one atm = 760 mmHg = 760 torr PV = nRT R = 0.08206 (L atm)/(mol K) $D = \frac{PM}{RT}$ $u_{rms} = \sqrt{\frac{3RT}{M}}$ $T(K) = T(^{\circ}C) + 273$

Heat and heat capacity: $q = C \times mass \times \Delta T$

Electromagnetic Radiation: $E = hv = hc/\lambda$ $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$ $c = 3.00 \times 10^8 \text{ m/s}$

Electron energy in single-electron species: $E = -2.18 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$

Electron transitions in H atom: $\Delta E = -2.18 \times 10^{-18} J \left(\frac{1}{n_{final}^2} - \frac{1}{n_{initial}^2} \right)$