Print name \qquad

Sign name \qquad

CIRCLE your recitation section in the list below.
Section
A Fri 10 am, Aiqin Fang
B Fri 11 am, Aiqin Fang
C Tue 3 pm, Rahul Jain
D Tue 1 pm, Rahul Jain
F W 10 am, Neeraj Kumar
G Wed 2 pm, Rahul Jain

Cell phones, PDAs, mp3 players, and other electronic devices must be turned off and stowed out of sight (your sight and mine). Calculator policy is in effect. Infractions will result in confiscation and point deductions.

Please clearly and legibly write your name, in ink, at the top of every page. Your score will not be recorded and your exam will not be returned if this is not done.

All answers should be rounded to the appropriate precision (correct significant figures.)
Atomic weights are provided in the Periodic Table. These values must be used.
You may not use any outside paper. If you reach a point where you need more scratch paper than the space available on this page and on the back of your exam, ask a proctor.

Be certain your answers are clear. If an answer is not clear, it will probably be considered wrong.
Problems marked with ** in the margin are directly from the assigned homework (either in the text or on worksheets in class).

Use your time effectively.
Time is up at $\mathbf{8 : 5 0 !}$!
name

1. [2 pts each] Clearly assign each statement as TRUE or FALSE. If we can't tell which you mean, it's wrong.

2. [10 pts] Three 5-L flasks (labeled A, B and C) each contain a sample of gas $\left(\mathrm{H}_{2}, \mathrm{He}\right.$ or CH_{4}, respectively) at 273 K and 1 atm . For each of the following quantities or values, circle the best choice.
a. lowest density:
b. lowest average kinetic energy:
c. greatest mass:
d. greatest average molecular speed:
e. greatest pressure:

Flask A (H_{2}) Flask B (He) Flask C $\left(\mathrm{CH}_{4}\right) \quad$ all same
Flask A (H_{2}) Flask B (He) Flask C $\left(\mathrm{CH}_{4}\right) \quad$ all same Flask A (H_{2}) Flask B (He) Flask C $\left(\mathrm{CH}_{4}\right) \quad$ all same Flask A $\left(\mathrm{H}_{2}\right) \quad$ Flask $\mathrm{B}(\mathrm{He}) \quad$ Flask $\mathrm{C}\left(\mathrm{CH}_{4}\right) \quad$ all same Flask A (H_{2}) Flask B (He) Flask C $\left(\mathrm{CH}_{4}\right) \quad$ all same
**3. [10 pts] Write the formation equation (the reaction corresponding to the $\Delta \mathrm{H}_{\mathrm{f}}^{0}$) for $\mathrm{HClO}_{3}(l)$. For full credit, include appropriate phase labels on all species.
name \qquad
4. ${ }^{* *}[6]$ A sample of methane gas is confined in a 1.1 L container at 432 torr and $87^{\circ} \mathrm{C}$. Calculate the number of moles of gas present. Show your work below, and write your final answer in the space provided. (No credit will be earned if the setup is not clearly shown.)

Answer: \qquad moles
**5. [6 pts] $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
A $41.0-\mathrm{mL}$ sample of a solution of $0.237 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 60.0 mL of a solution of $0.250 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. How many grams of precipitate can be produced, according to the balanced reaction equation above? Show your work below, and write your final answer in the space provided. (No credit will be earned if the setup is not clearly shown.)

Answer: \qquad g
6. ${ }^{* *}$ (a) [6 pts] Balance the following equation by writing appropriate coefficients into the spaces provided. All reactants and products are shown. (You may use as much scratch space as you like, but please make sure you write your final answers clearly and legibly in the spaces provided.)

Final, graded answer:

$$
\ldots \mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}+\ldots \mathrm{H}^{+}+\ldots \mathrm{IO}^{-} \quad \rightarrow \quad \mathrm{SO}_{2}+\ldots \mathrm{IO}_{3}^{-}+\ldots
$$

Scratch space (will not be graded):

$$
\mathrm{S}_{2} \mathrm{O}_{6}^{2-}+\mathrm{H}^{+}+\mathrm{IO}^{-} \quad \rightarrow \quad \mathrm{SO}_{2}+\quad \mathrm{IO}_{3}^{-}+\quad \mathrm{H}_{2} \mathrm{O}
$$

(b) [2 pts each $]$ For the reaction provided in part (a), identify:
element reduced \qquad element oxidized \qquad reductant (reducing agent) \qquad
(c) [2 pts] In the reaction provided in part (a), one species is a gas. Which one is it? \qquad

1
(1A)
THE PERIODIC TABLE
name \qquad

1	$\begin{gathered} 1 \\ \mathrm{H} \\ 1.008 \end{gathered}$	$\begin{gathered} 2 \\ (2 A) \end{gathered}$											$\begin{gathered} 13 \\ (3 A) \end{gathered}$	$\begin{gathered} 14 \\ (4 A) \end{gathered}$	$\begin{gathered} 15 \\ (5 A) \end{gathered}$	$\begin{gathered} 16 \\ (6 \mathrm{~A}) \end{gathered}$	$\begin{gathered} 17 \\ (7 A) \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \end{gathered}$
2	$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \mathrm{~B} \\ 10.81 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 6 \\ \mathrm{C} \\ 12.01 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ N \\ 14.01 \\ \hline \end{array}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ F \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \\ \hline \end{gathered}$
3	$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Mg} \\ 24.31 \end{gathered}$	$\begin{gathered} 3 \\ (3 \mathrm{~B}) \end{gathered}$	$\begin{gathered} 4 \\ (4 B) \end{gathered}$	$\begin{gathered} 5 \\ (5 B) \end{gathered}$	$\begin{gathered} 6 \\ (6 B) \end{gathered}$	$\begin{gathered} 7 \\ (7 \mathrm{~B}) \end{gathered}$	8	$\begin{gathered} 9 \\ (8 \mathrm{~B}) \end{gathered}$	10	$\begin{gathered} 11 \\ (1 \mathrm{~B}) \end{gathered}$	$\begin{gathered} 12 \\ (2 \mathrm{~B}) \end{gathered}$	$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \end{gathered}$	$\begin{gathered} \hline 14 \\ \mathrm{Si} \\ 28.09 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ P \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} 16 \\ S \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.95 \end{gathered}$
4	$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.87 \end{gathered}$	$\begin{gathered} 23 \\ V \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ M n \\ 54.94 \end{gathered}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \\ 55.85 \end{array}$	$\begin{array}{\|c\|} \hline 27 \\ \mathrm{Co} \\ 58.93 \\ \hline \end{array}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.38 \end{gathered}$	$\begin{gathered} \hline 31 \\ \mathrm{Ga} \\ 69.72 \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ \mathrm{Ge} \\ 72.64 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.80 \end{gathered}$
5	$\begin{gathered} 37 \\ R b \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathrm{Nb} \\ 92.91 \end{array}$	$\begin{gathered} \hline 42 \\ \text { Mo } \\ 95.96 \end{gathered}$	$\begin{gathered} 43 \\ \mathrm{Tc} \\ (98) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \\ 101.1 \end{array}$	$\begin{gathered} \hline 45 \\ \mathrm{Rh} \\ 102.9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 46 \\ \text { Pd } \\ 106.4 \end{array}$	$\begin{array}{\|c\|} \hline 47 \\ \mathrm{Ag} \\ 107.9 \end{array}$	$\begin{gathered} \hline 48 \\ \mathrm{Cd} \\ 112.4 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { In } \\ 114.8 \end{gathered}$	$\begin{gathered} \hline 50 \\ \mathrm{Sn} \\ 118.7 \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ S b \\ 121.8 \end{array}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \end{gathered}$	$\begin{gathered} \hline 53 \\ \mathrm{I} \\ 126.9 \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.3 \end{gathered}$
6	$\begin{gathered} 55 \\ \mathrm{Cs} \\ 132.9 \end{gathered}$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ 137.3 \end{gathered}$	$\begin{gathered} 57 \\ \mathrm{La} \\ 138.9 \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.5 \end{gathered}$	$\begin{array}{\|c} \hline 73 \\ \mathrm{Ta} \\ 180.9 \\ \hline \end{array}$	$\begin{gathered} 74 \\ W \\ 183.8 \end{gathered}$	$\begin{array}{\|c\|} \hline 75 \\ \operatorname{Re} \\ 186.2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 76 \\ \text { Os } \\ 190.2 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 77 \\ \mathrm{Ir} \\ 192.2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ \mathrm{Pt} \\ 195.1 \end{array}$	$\begin{array}{\|c\|} \hline 79 \\ \mathrm{Au} \\ 197.0 \end{array}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \\ \hline \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.4 \end{gathered}$	$\begin{array}{\|c\|} \hline 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{array}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ 209.0 \end{gathered}$	$\begin{gathered} 84 \\ \mathrm{Po} \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ R n \\ (222) \\ \hline \end{gathered}$
7	$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \\ \hline \end{gathered}$	88 $R a$ (226)	89 $A c$ (227)	$\begin{array}{\|c\|} \hline 104 \\ R f \\ (265) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ \mathrm{Db} \\ (268) \\ \hline \end{array}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (271) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 107 \\ \text { Bh } \\ (272) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 108 \\ \mathrm{Hs} \\ (277) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \\ (276) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ \text { Ds } \\ (281) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 111 \\ \mathrm{Rg} \\ (280) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 112 \\ \text { Cn } \\ (285) \\ \hline \end{array}$	$\begin{gathered} 113 \\ \text { Uut } \\ (284) \end{gathered}$	$\begin{array}{\|c\|} \hline 114 \\ \text { Uuq } \\ (289) \end{array}$	$\begin{array}{\|c\|} \hline 115 \\ \text { Uup } \\ (288) \end{array}$	$\begin{gathered} 116 \\ \text { Uuh } \\ (293) \\ \hline \end{gathered}$	$\begin{gathered} 117 \\ \text { Uus } \\ (294) \end{gathered}$	$\begin{gathered} \hline 118 \\ \text { Uuo } \\ (294) \end{gathered}$

58	59	60	61	62	3	64	65	66	67	68	69	70	
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Based on IUPAC 2007 (publ 2009).

Avogadro's number: $\quad 6.022 \times 10^{23}$
Gases: \quad one $\mathrm{atm}=760 \mathrm{mmHg}=760$ torr $\quad \mathrm{PV}=\mathrm{nRT} \quad \mathrm{R}=0.08206(\mathrm{~L} \mathrm{~atm}) /(\mathrm{mol} \mathrm{K})$

$$
\mathrm{D}=\frac{\mathrm{PM}}{\mathrm{RT}} \quad u_{r m s}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \quad \mathrm{~T}(\mathrm{~K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273
$$

Heat and heat capacity: $\quad \mathrm{q}=\mathrm{C} \times$ mass $\times \Delta \mathrm{T}$
Electromagnetic Radiation: $\quad E=\mathrm{h} \nu=\mathrm{hc} / \lambda \quad \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \quad \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Electron energy in single-electron species: $\quad E=-2.18 \times 10^{-18} J\left(\frac{Z^{2}}{n^{2}}\right)$
Electron transitions in H atom: $\Delta E=-2.18 \times 10^{-18} J\left(\frac{1}{n_{\text {fnal }}^{2}}-\frac{1}{n_{\text {initial }}^{2}}\right)$

