j ,	Tining the CT of the CT		name_Key	
- 2W	University of Louisville (Chem 201 Exam 3		Fall 2013
\bigcirc	 The following equation is balanced: 2 Ag₂O (s) → 4 Ag (s) + O₂ (g) 	$\Delta H^{\circ} = 62.10 \text{ k}$	Scored grade (instruction)	(tops)
	a. [2 pts] What is the correct systematic n	ame of Ag ₂ O? Si	ver oxide	
	b. [2] Is the reaction above exothermic or	r endothermic?	ido thermic (!	14 is positive)
	c. [2] Which element is reduced in the re-	action above? Ag	(Ag+ -> Ago))
	d. [3] What is the ΔH° value for the react double of above (xn) $4 \text{ Ag}_{2}O(s) \rightarrow 8 \text{ Ag}(s) + 2 O_{2}(s)$	ion below? other verses) $\Delta H^{\circ} = +124$.	ersion: 4Agcs) + C	2(g) -> 2Ag2O DH=-62 (reverse of above)
	e. [10] In the box below, write the formation equation (the reaction corresponding to the ΔH^0_f) for $Ag_2O(s)$, and give the value of the ΔH^0_f . For full credit, include appropriate phase labels on all species.			
0	2 Ag (s) + 1 Or(g) -	> Ag20(s)	reverse and 12	of renprovided above: $\Delta H_f^{\circ} = -31.05 \text{ kJ}$
	8			2
<i>y</i>	2. [2 each] Three identical 5-L flasks each of the following quantities or values, circles	th contain a sample of the best choice.	gas (He, Ne or Ar) at 2	73 K and I atm. For each
	a. greatest density:	Не	Ne Ar	all same
)	b. greatest average kinetic energy:	Не	Ne Ar	all same
	c. greatest rate of effusion through a valve	: He	Ne Ar	all same
	d. greatest average speed of atoms:	He	Ne Ar	all same
	e. greatest number of atoms:	Не	Ne Ar	all same
PI	3. [6] **41.0 mL of a solution of 0.237 M many grams of precipitate can be produced the space provided. (Molar mass of PbCl ₂ : 2+ 2Cl > PbCl ₂ (S)	? SHQ W YOUR W(= 278.1. NH.NO. = 80	ORK in the area below (and write your answer in
	0.0410L x 0.25 1 mol 10 x 1	mol Pb2+ x 278.10	1 = 2.70 g	PbCl2
0	0.0410 L × 0.237 mol Pb2 x 1.0000 L × 0.250 mol Ct x 1.0000 L × 0.250 mol Ct x 1.0000 L	2 mol Ci-	nol {2.00	1 gPbCl2 is limiting

University of Louisville 4. [6] **A 15.4 L container holds a gas at 38 °C and 2.19 atm. The gas is transferred to a new container of 25.6 L and the new temperature is 87°C. What is the new pressure (in atm) of the gas? SHOW YOUR WORK in the area below and write your answer, rounded appropriately, in the space provided. 360K=T2 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \Rightarrow P_2 = \frac{P_1V_1T_2}{T_1V_2} = \frac{(2.19 \text{ atm})(15.4 \text{ L})(360 \text{ K})}{(311 \text{ K})(25.6 \text{ L})} = 1.52 \text{ atm}$ (3 8ig (igs) 5. [4] **What is the energy (in J) of the n = 2 level of O^{7+} ? SHOW YOUR WORK in the area below and write your answer in the space provided. $E = -2.18 \times 10^{-18} \text{ J} \left(\frac{8^2}{3^2}\right) = \left(-2.18 \times 10^{-18} \text{ J}\right) \left(16\right) = -3.488 \times 10^{-17} \rightarrow 3.8iq \text{ figs}$ 6. [2 each] Clearly assign each statement as TRUE or FALSE. If we can't tell which you mean, it's wrong. True! We are being bombarded with electromagnetic radiation right now, from the lights in this room. A photon of red light has a greater frequency than a photon of blue light. Greater $\mathcal{X}_{\mathcal{I}}$ smaller \mathcal{V} Very little
Humans can see most of the electromagnetic spectrum. Electrons in atoms can orbit at any distance and can have any energy. Energy levels are quantized $E = -2.18 \times 10^{-18} J \left(\frac{Z^2}{L^2} \right)$ The equation to the right can be used to calculate the energy of any electron in an atom. only single - e species When an electron in an atom relaxes from n=3 to n=2, a photon is emitted. If the temperature of a gas sample rises from 20°C to 40°C, the average kinetic energy of the molecules is doubted only increases by about 7% 4293K 4313K At a given temperature, all the molecules in a sample of gas have the same kinetic energy.

where a range of speeds and kinetic energy values

All diatomic elements are gases under standard conditions. I2(s), 6, (a)(a) At the same pressure, temperature and volume, all ideal gas samples have the same average molecular velocity. Same TE, but The speeds of molecules depend on mass Gases behave most ideally at high pressures and high temperatures. At STP, one mole of any substance will occupy a volume of 22.4 L. only works for gases behaving Breaking bonds is always an endothermic process. Combustion of any substance will yield CO_2 and H_2O as products. only if $C \notin H$ in reactants For an element in its stable state, $\Delta H_f^{\circ} = 0$ and oxidation number = 0. When the temperature of a sample of gas increases, its density decreases. Dif V1, but if Vis constant, D is constant, False

42