Do not open the exam until you are told to do so.

Cell phones and other electronic devices must be turned off and stowed out of sight (your sight and mine). Calculator policy is in effect. Infractions will cost you points!

ALL outside paper must be stowed out of sight. Unauthorized materials will result in your exam being removed and a score of 0 assigned. If you reach a point where you need more scratch paper than the space available, ask a proctor.

Please clearly and legibly write your name, in ink, at the top of both pages of your answer sheet. Your score will not be recorded and your exam will not be returned if this is not done.

All answers should be rounded to the appropriate precision (correct significant figures.)

Atomic weights are provided in the Periodic Table. These values must be used.

Be certain your answers are clear. If an answer is not clear, it will probably be considered wrong.

Use your time effectively.

When authorized to open your exam, you may carefully remove this cover sheet. When you are finished with your exam, please turn in **the two answer sheets.** Make sure your name is clearly written on every page.

Time is up at 12:15!!

Potentially useful information:

 6.022×10^{23}

na	name								
Scored grade (instructor use only!) 1. Write balanced chemical equations, with appropriate phase labels, for the following reactions. In both cases, you may use as much scratch space as you need, but write your final answer legibly in the box. a. [10 pts] The combustion of gaseous cyclopropane , C ₃ H ₆ .									
	(remember to balance rxn and include phase labels.)								
**b. [10 pts] Chlorine trifluoride gas and sodium hydroxide produce sodium ch	lorite, sodium fluoride and water.								
	(remember to balance rxn and include phase labels.)								
2. (a) [3 pts] A covalent compound of H, Si and F is 41.86% Si and 5 the compound? Show your work below to earn credit and write the finding the compound of H, Si and F is 41.86% Si and 5 the compound?									
An	swer:								
(b) [2 pts] Write two other possible chemical formulas for the compo formula you wrote above.	und that are consistent with the empirical								
(c) [3 pts] In a 50.00-g sample of the compound, how many atoms of to earn credit and write your answer, rounded appropriately, in the sp									
An	swer:								

name												
	r the two most abun from the periodic ta		carbon on earth a	12 C and 13 C.	Based on the aver							
1%	10%	25%	50%	75%	90%	99%						
	What is the molar nad with correct unit(provided.									
(b) [2 pts] What	is the systematic na	nme for $(NH_4)_2C_1$										
	00-mol sample of (lany moles of nitrog	2										
How ma	any grams of carbo	on are present?										
How ma	any atoms of hydro	gen are present?										
6. [12 pts] Fill i	in the blanks. (In so	me cases there co	ould be more than	n one acceptable	answer; pick one	e.)						
	A substance that fo	orms a network so	olid under norma	l laboratory cond	litions.							
	The number of sign	nificant figures th	nat should be repo	orted for the mol	ar mass of H ₃ AsO	O ₄ .						
	The product formed	d in the combust	ion of aluminum	metal.								
	A main-group meta	ıl with variable c	harge.									
	An element that co	mmonly forms b	oth a cation and a	an anion.								
	The number of new	tuona in on ota	of 37C1									

name 7. [16 pts] Clearly indicate whether each statement is TRUE or FALSE. If we can't tell which you mean, it's wrong. A typical atom of sulfur has 16.07 neutrons. Hydrogen is an alkali metal. Different isotopes of an element have the same number of protons. The designation "transition elements" only includes metals. O_2 is binary and diatomic. Ammonium nitrate contains both covalent and ionic bonds. The formula of a covalent network substance can be determined from the charges on its ions. Transition metals have variable charges, but main-group metals always form constant-charge cations. 8. [2 pts] Identify each of the following as an element, a covalent compound or an ionic compound. F_2 9. [14 pts] Give a **correct systematic name** for each of the following. Spelling counts. **Ca(HCO₃)₂ ** $Zn(MnO_4)_2$ $**Mn(CH_3COO)_3$ **SiF₄ **MgH₂ **10. [16 pts] Give the correct **chemical formula** for each of the following. **ammonium oxalate **sulfur trioxide **hydrogen peroxide **manganese(IV) oxide **diselenium hexasulfide elemental hydrogen **lead(II) sulfate perbromate ion

name

	1 (1A)		THE PERIODIC TABLE													18 (8A)							
1	1 H 1.008	2 (2A)														1 (3.	-	14 (4A)	15 (5A)	1) (6	6 A)	17 (7A)	2 He 4.003
2	3 Li 6.941	4 Be 9.012				_		_				4.0			4.0	5 E 10.	3	6 C 12.01	7 N 14.0		3 O .00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3 (3B)	(4	ł В) (5 5B)	6 (6B)	7 (7B	8) (8		9 (8B) –	10		11 1B)	12 (2B)	1 A 26.	ā	14 Si 28.09	15 P 30.9	1 7	s	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	2 T 5 47	ï	23 V 0.94	24 Cr 52.00	25 Mn 54.9	i F	e	27 Co 8.93	28 Ni 58.6		29 Cu 3.55	30 Zn 65.38	3 G 3 69.	a	32 Ge 72.64	33 As 74.9	3 S 2 78		35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.9:	4 Z 1 91	r	41 Nb 2.91	42 Mo 95.96	43 Tc (98	R	u	45 Rh 02.9	46 Pd 106.		47 Ag 07.9	48 Cd 112.4	4 Ii 114	n	50 Sn L18.7	51 Sb 121.	Т	2 e 7.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	7 H 9 1 78	f	73 Ta 30.9	74 W 183.8	75 Re 186	0	s	77 Ir 92.2	78 Pt 195.		79 Au 97.0	80 Hg 200.6	8 T 5 204	ī	82 Pb 207.2	83 Bi 209.	P	- 1	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 Ac (227	10 R) (26	f	.05 Ob 268)	106 Sg (271)	107 Bh (272	Н	s	109 Mt 276)	110 Ds (281		l11 Rg 280)	112 Cn (285)	11 Uu) (28	ıt	114 Uuq (289)	115 Uup (288	Ū	L6 uh 93)	117 Uus (294)	118 Uuo (294)
			1	58 Ce 40.1	e Pr Nd Pm		m	62 6 Sm E 150.4 15		G	64 6d 7.3 1	65 Tb 58.9	60 D 162	у	67 Ho 64.9	68 Er 167.	T	9 m 8.9 1	70 Yb .73.0	7 Li 17!	u		
Th Pa U					3 p 37)	94 Pu (244)	95 Am (243	C	6 m 47) (97 Bk 247)	9; C (25	f	99 Es 252)	100 Fm (257		1d	102 No 259)	10 L (26	r				

Based on IUPAC 2007 (publ 2009).