October 14

Do not open the exam until you are told to do so.

Cell phones and other electronic devices must be turned off and stowed out of sight (your sight and mine). Calculator policy is in effect. Infractions will cost you points!

ALL outside paper must be stowed out of sight. Unauthorized materials will result in your exam being removed and a score of 0 assigned. If you reach a point where you need more scratch paper than the space available, ask a proctor.

Please clearly and legibly write your name, in ink, at the top of both pages of your answer sheet. Your score will not be recorded and your exam will not be returned if this is not done.

All answers should be rounded to the appropriate precision (correct significant figures.)

Atomic weights are provided in the Periodic Table. These values must be used.

Be certain your answers are clear. If an answer is not clear, it will probably be considered wrong.

Use your time effectively.

When authorized to open your exam, you may carefully remove this cover sheet. When you are finished with your exam, please turn in **the two answer sheets.** Make sure your name is clearly written on every page.

Time is up at 12:15!!

Potentially useful information:

 6.022×10^{23}

Molar mass values:

NO 30.01

S₄N₄ 184.32

 $Ag_2O 231.8$

 Ag_2S 247.9

Solubility trends:

- 1. Group 1 (1A) compounds, ammonium compounds, and acids are soluble.
- 2. All nitrates, acetates, chlorates, and perchlorates are soluble.
- 3. Silver, lead, mercury(I) and copper(I) compounds are INSOLUBLE.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Sulfates are soluble except calcium sulfate and barium sulfate.
- 6. Compounds with anions of 2– or 3– charge are INSOLUBLE.
- 7. Hydroxides are INSOLUBLE except calcium hydroxide and barium hydroxide.

	1 (1A)				T	HE I	PER	IOI	DIC	ТА	BL	E										18 (8A)
1	1 H 1.008	2 (2A)														13 (3A)	14 (4A)	15 (5/		16 (6A)	17 (7A)	2 He 4.003
2	3 Li 6.941	4 Be 9.012			_		-	_				•				5 B 10.81	6 C 12.0:	7 N L 14.		8 O 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3 (3B)	4 (4B)	5) (58		5 B) (7 7B) г	8	9 – (8B)	1	0 	11 (1B)	(2		13 Al 26.98	14 Si 28.09	15 P 30.		16 S 32.07	17 Cl 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.8	23 V 7 50.	' c	r	25 Mn 4.94	26 Fe 55.85	27 Co 58.93	N	8 li .69	29 Cu 63.5	3 Z 5 65.	n	31 Ga 69.72	32 Ge 72.64	33 As 1 74.	5	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.2	4: Ni 2 92.	5 M	lo	43 Tc 98)	44 Ru 101.1	45 Rh 102.9	P	6 d 6.4	47 Ag 107.9	4 C 9 112	d	49 In 114.8	50 Sn 118.7	51 St 7 121	5	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.	73 Ta 5 180	a V	v	75 Re 86.2	76 Os 190.2	77 Ir 192.2	P		79 Au 197.0	8 H 200	g	81 TI 204.4	82 Pb 207.2	83 B 2 209	i	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (265	DI	S	g	L07 Bh 272)	108 Hs (277)	109 Mt (276	1: D (28		111 Rg (280	11 C) (28	n	113 Uut (284)	114 Uuq (289	11 Uu) (28	p	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
\downarrow																						
				58 Ce -0.1 1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sn 150	n E		64 Gd 57.3	6 T 158	b	66 Dy 62.5	6 H 164	o E		69 Tm 68.9	70 Yb 173) L	'1 .u 5.0	
			-	90 Γh 2.0 2	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (24	. A		96 Cm 247)	9 B (24	k	98 Cf 251)	9 E (25	s F	m	101 Md 258)	102 No (259) L	03 .r 62)	

Based on IUPAC 2007 (publ 2009).

		name					
		Scored grade (instructor use only!)					
1. Write balanced , net ionic chemical equations , with appropriate phase labels , for the following reactions. In both cases, you may use as much scratch space as you need, but write your final answer legibly in the box. **a. [10 pts] The reaction of aqueous silver nitrate and aqueous zinc bromide .							
	(remembe	er to give net ionic, balanced rxn, and include phase labels.					
**b. [10 pts] The reaction of aqueous s	odium hydroxide and	aqueous chlorous acid.					
	(romombo	er to give net ionic, balanced rxn, and include phase labels.					
	(тететов	er to give net tonic, butancea 1xn, and include phase tabets.					
2. [2 pts each] Give the correct oxidatio	on number for sulfur in	n each chemical species below.					
calcium sulfate	sulfur tetrach	loride					
** S ₄ O ₃ ²⁻	S_8	hydrogen sulfide					
3. [2 pts each]							
**(a) give the formula of hydro	fluoric acid:						
(b) give the formula of sodium	hydrogen sulfite:						
hh()							
**(c) give the name of HNO_2 :							
(d) give the name of HPO:							
(d) give the name of H ₃ PO ₄ :							
(e) give an example of an amph	oteric species:						

name_

4. **(a) [5 pts] Balance the following redox reaction, occurring in aqueous solution. We'll grade the answer in the box, so make sure it's clearly legible.

(final answer:) ____ $H^+ +$ ___ $Cl^- +$ ___ HNO_2 \rightarrow ___ HClO + ___ $N_2O +$ ___ H_2O

(b) [2 pts each] In the above reaction, what is:

the element reduced? the reducing agent? _____

5. (a) [6 pts] In the list below, circle all substances that are INSOLUBLE in aqueous solution.

 K_3PO_4 Al(OH)₃ CuCl CaC₂O₄ AgBr MoO₃

(b) [6 pts] In the list below, circle all substances that are strong electrolytes.

HF ammonia $AgClO_4$ potassium hydroxide H_2O CO_2

(c) [6 pts] In the list below, circle all substances that would react with acids to form gaseous products.

 $K_2C_2O_4$ $CaCO_3$ $NaHSO_3$ LiOH $(NH_4)_2SO_4$ ammonia

6. [2 pts each] Clearly label each statement as TRUE or FALSE. If we can't tell which you mean, it's wrong.

**Only ionic compounds can dissociate in water.

**A nonelectrolyte dissociates completely when dissolved in water.

**If a reaction is done at stoichiometric amounts of all reactants, then no reactant is in excess.

Strong acids are strong electrolytes.

**H⁺ is always a spectator ion in an acid/base reaction.

H₂O is always a product in an acid/base reaction.

 $_$ CH₃OH is a strong base.

In a balanced reaction, the total charge must be the same in the reactants and products.

	name	
**7. [5 pts] You need to prepare 150.0 mL of 2.7 M potass needed? SHOW YOUR WORK below and write your final	sium nitrate. How many gran	
	Answer:	g
8. The following equation is balanced.		
$S_4N_4 + 4 Ag_2O \rightarrow 4 Ag_2S + 4$	NO	
**(a) [5 pts] The reaction is conducted beginning with 26.3 can be made? SHOW YOUR WORK below and write your	$67 \text{ g S}_4\text{N}_4$ and $69.23 \text{ g Ag}_2\text{O}$. In final answer in the space.	How many grams of NO
	Answer:	g NO
(b) [4 pts] After the reaction described above, 6.90 g of NO experiment? SHOW YOUR WORK and write the answer is		t is the percent yield in this
	Answer:	%
9. [3 pts] In the space provided, draw a simple sketch		
showing the interaction between an aqueous bromide ion and a water molecule. Represent relevant charges		
accurately.		