(6)

Dr. Richter

PRINT NAME	
SIGN NAME	

You are required to answer all question sets. Please note that some of the question sets offer you a choice of questions - do only the number of questions asked for. Please write legibly and draw clearly. Points will be deducted for illegible and unclear answers. The point total for this exam is 100 and the value of each question set is shown in parenthesis beside that set. **READ ALL QUESTIONS CAREFULLY AND APPORTION YOUR TIME ACCORDINGLY**.

1. Draw a *Lewis* structure for <u>one</u> (1) of the following ions:

CH2COCH(CH2CH3)OCH3

CH₃CH(OCH₃)CH₂CH₂C=0

2. Draw a *skeletal* structure for <u>one</u> (1) of the following molecules:

HOOCCH₂CH(OH)CH(CH₃)₂

CH₃CH(Br)C(CH₃)₂OCH₂CH₃

(6)

3. The structure below belongs to a family of compounds called the "damascenones." These compounds are responsible for the fragrance of roses. Indicate the hybridization of each of the numbered atoms in the provided list on the right. *Remember, use the resonance hybrid as your guide. If an atom is "in between," label it as such.* (12)

ANSWERS:

- 1. _____
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6.

4. Consider the five structures below (a-e).

A. Draw the resonance hybrid of the ion represented by structures **a-e**.

B. Rank resonance structures **a-e** according to contribution to the resonance hybrid.

(4)

5. Consider the molecule (chlorambucil, a chemotherapeutic agent) shown below.

For each of the highlighted bonds **1-4**, match the bond with a 3-D orbital picture AND the description of the orbital overlap forming the σ and/or π bond(s). Write your answers in the table below. **Notes: 1.** Do NOT consider the resonance hybrid for this exercise, **2.** You may need to use more than one description per bond, **3.** Not all choices will be used.

Orbital Picture Choices

8:
$$\sigma \text{Nsp}^3\text{-Csp}^3$$

2:
$$\sigma Csp^3$$
- Osp^2

9:
$$\sigma \text{Csp}^2\text{-Csp}^2$$

3:
$$\sigma \text{ Csp}^2\text{-Osp}^2$$

10:
$$\sigma \text{ Csp}^3\text{-Csp}^3$$

13:
$$\pi$$
 Cp-Np

7:
$$\sigma \text{ Nsp}^2\text{-Nsp}^2$$

Answers:

Bond	Orbital	Description(s)	Bond	Orbital	Description(s)
	Picture			Picture	
1			3		
2			4		

7. Of the **5** pure substances below, circle the one with the *highest* boiling point.

OH OH

8. For *each* compound below (a-c), circle which proton (1, 2, or 3) has the lowest pKa. (6)

(5)

9. Of the 5 bases below, circle the weakest (i.e. least reactive).

10. Identify the circled functional groups in the structure below. Reminder: use the term that Smith calls the "Type of Compound." For example, use "ether," not "alkoxy." Write your answer in the blanks provided.(8)

(5)

11. For each of the following reactions (**A-D**) **a. label** the Lewis base (nucleophile) and the Lewis acid (electrophile) and **b.** draw reaction arrows to show the appropriate *electron movement* between the nucleophile and electrophile. *You do not need to show the products.* (8)

12. Indicate whether each statement **a-e** is **true** (**T**) or **false** (**F**). (10)

- **a.** IR spectroscopy can be used to obtain functional group information about a compound.
- **_____ b.** When matter absorbs infrared radiation, it causes vibrational excitations to take place within the matter.
- _____c. IR spectral data is reported in parts per million or "ppm."
- _____ **d.** In general, bonds between lighter atoms will absorb a higher frequency of IR radiation than will bonds between heavier atoms.
- **e.** Bonds between sp³ atoms tend to vibrate at lower frequencies than do bonds between sp²- or sp-hybridized atoms.

THE PERIODIC TABLE 10.08 1.0941 9.012 1.1 11 12 1.1 12 1.2 2.3 24 25 8.9 10 11 12 1.1 12 2.2 23 24 125 88.9 10 11 12 3. 3 39 40 14 18 18 18 18 18 18 18 18 18 18 18 18 18						1		-	1000			3,00						77.00		-			
THE PERIODIC TABLE S				(223)	F 87	132.9	S	55	85.47	Вb	37	39.10	^	19	22.99	Na	11	6.941	⊏.	ω	1 H 1.008		н
THE PERIODIC TABLE S				(226)	R 88	137.3	Ba	56	87.62	Sr	38	40.08	Ca	20	24.31	Mg	12	9.012	Be	4			2
THE PERIODIC TABLE 13 14 15 16 17 8 9 10 11 12 5 6 7 8 9 10 11 12 10 81 12.01 14.01 16.00 19.00 13 14 15 16 17 15 16 7 8 9 16 8 C N 0 19.00 19.00 19.00 17 10 11 12 28 29 30 31 32 33 34 35 18 12 14 15 16 17 18 14 15 16 17 18 15 16 17 18 15 16 17 18 15 16 17 18 17 18 11 11 11 11 11 11 11 11 11 11 11 11	9 7 23	14 0 5	ا	(227)	89 Ac	138.9	La	57	88.91	~	39	44.96	Sc	21		ω							
THE PERIODIC TABLE 13 14 15 16 17 8 9 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 12.01 14.01 16.00 19.00 10.81 13. 14 15 16 17 10.81 12.01 14.01 16.00 19.00 10.81 13. 14 15 16 17 10.81 12.01 14.01 16.00 19.00 10.81 13. 14 15 16 17 10.81 12.01 14.01 16.00 19.00 10.81 13. 14 15 16 17 10.81 12.01 14.01 16.00 19.00 10.81 13. 32 33 34 35 86 A 45 49 50.72 72.63 74.92 78.96 79.90 10.81 18.7 12.63 74.92 78.96 79.90 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.81 18.7 121.8 127.6 126.9 10.92 19.3 18.6 19 11.0 111 112 113 114 115 116 117 10.9 18.3 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.3 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) 10.9 18.8 18.6 190.2 192.2 195.1 195.1 195.1 195.0 195.1 195.0 195.1 195.0 195.1 195.1 195.0 195.1 195.				(265)	104 Rf	178.5	ૂ	72	91.22	Zr	40	47.87	=!	22		4							
E PERIODIC TABLE 13 14 15 16 17 8 9 10 11 12			4	(268	105 Db	-		73		Np	41		_	23		5							ᅻ
FRIODIC TABLE 13 14 15 16 17 S	Z			31250		-		74	_	M	42	-		24		6							H P
13 14 15 16 17 17 17 17 17 18 9 10.81 12.01 14.01 16.00 19.00	93 Np (237)	61 Pm (145)		7555	_	1			1				_			. 1							Ĕ.
13 14 15 16 17 17 17 17 17 18 9 10.81 12.01 14.01 16.00 19.00	94 Pu (244)	62 Sm 150.4			40.10.15	-						-				7							00
13 14 15 16 17 17 17 17 17 18 9 10.81 12.01 14.01 16.00 19.00		-	-1			┿		76	_			-		26		œ							IC.
13 14 15 16 17 17 17 17 17 18 9 10.81 12.01 14.01 16.00 19.00	Same	+	-	276)	109 Mt	-			02.9	R P	45	-		27		9							TAE
13 14 15 16 17		 	1	(281)	110 Ds	195.1	뫈	78	106.4	Pd	46	58.69	Z	28		10							Ë
13 14 15 16 17 10 17 10 17 10 17 10 10		_	4	(280)	111 Ra	197.0	Au	79	107.9	Ag	47	63.55	5	29		11							
13 14 15 16 17 8 C N O F 10.81 12.01 14.01 16.00 19.00 13 14 15 16 17 Al Si P S Cl 26.98 28.09 30.97 32.07 35.45 31 32 33 34 35 Ga Ge As Se Br 69.72 72.63 74.92 78.96 79.90 49 50 51 52 Se Br 114.8 118.7 121.8 127.6 126.9 81 82 83 84 85 TI Pb Bi Po At 204.4 207.2 209.0 (209) (210) 113 114 115 116 117 Uub Uub Uub Uub Uub 10 Er Tm Yb Lu 4.9 167.3 168.9 70 <td></td> <td></td> <td>1</td> <td>300000</td> <td></td> <td>-</td> <td></td> <td>80</td> <td>_</td> <td></td> <td>48</td> <td>_</td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	300000		-		80	_		48	_				12							
14 15 16 17 6	99 Es (252)		4			-						_			26.	→	1.	10.	В.	<u></u>			H
6 7 8 9 C N O F .01 14.01 16.00 19.00 4 15 16 17 Si P S CI .09 30.97 32.07 35.45 Re As Se Br .63 74.92 78.96 79.90 Sh Te I 8.7 121.8 127.6 126.9 Re Br 8.7 121.8 127.6 126.9 Re Br 101 102 103 Md No Lr 101 102 103	100 Fm (257)	68 Er 167.3				-						_			-								
7 8 9 N O F .01 16.00 19.00 5 16 17 P S CI .97 32.07 35.45 33 34 35 Se Br .92 78.96 79.90 51 52 53 Te I 1.8 127.6 126.9 19.0 (209) (210) 15 116 117 Uuh Uus 88) (293) (294) 70 71 Yb Lu 173.1 175.0 102 103 No Lr (259) (262)	101 Md (258	_	1			-		32	-		8	-			-	<u>S</u> i	4		<u>ი</u>	თ			4
8 9 0 F 5.00 19.00 16 17 S CI 2.07 35.45 34 35 Se Br 8.96 79.90 52 53 Te I 177.6 126.9 34 85 50 At 109) (210) 16 117 Uus 93) (294)		 	1	288)	115 Uub	09.0	<u>Φ</u>	83		dS	51	_		33	-	ס	15		z	7			15
99 99 1.7 1.7 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45		+	1	(293)	116 Uuh	(209)	Ро	84	127.6	Te	52	78.96	Se	34	32.07	S	16	16.00	0	œ			16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52)	5.0	1	(294)	117 Uus	(210)	Ą	85	126.9	П	53	79.90	막	35	35.45	Ω	17	19.00	П	9			17
				-		_	P	86				_		36	_	Ą	18				2 He 4.003	,	18

TABLE 7-2 An Alphabetic Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared

Group or Class	Frequency Ranges (cm ⁻¹) and Intensities ^a	Assignment and Remarks
. 0		
Acid halides R-C		
Acid Halides R		
X	1810-1790 (s)	C=O stretch; fluorides 50 cm ⁻¹ higher
aliphatic	965-920 (m)	C—C stretch
	440–420 (s)	Cl—C=O in-plane deformation
	1785–1765 (s)	C=O stretch; also a weaker band (1750-
aromatic	1705-1705 (3)	1735 cm ⁻¹) due to Fermi resonance
*	890-850 (s)	C-C stretch (Ar-C) or C-Cl stretch
	0,0 000 (0)	į.
Alcohols		037 1 121 001 1-
primary —CH ₂ OH	3640-3630 (s)	OH stretch, dil CCl ₄ soln
	1060-1030 (s)	C—OH stretch; lowered by unsaturation
secondary —CHROH	3630-3620 (s)	OH stretch, dil CCl ₄ soln C—OH stretch; lower when R is a
	1120–1080 (s)	branched chain or cyclic
	2422 2410 ()	OH stretch, dil CCl ₄ soln
tertiary —CR ₂ OH	3620-3610 (s)	C—OH stretch; lower when R is branched
	1160–1120 (s)	OH stretch; broad band in pure solids or
general —OH	3350-3250 (s)	liquids
	1440 1260 (m s hr)	C—OH in-plane bend
	1440–1260 (m–s, br)	C—OH out-of-plane deformation
	700-600 (m-s, br)	C OII out-or-plane determines
,o		
Aldehydes R-C	2830–2810 (m)	Fermi doublet; CH stretch with overtone of
Aldellydes R—C	2740-2720 (m)	CH bend (see page 164)
. Н	1725-1695 (vs)	C=O stretch; slightly higher in CCl ₄ soln
	1440-1320 (s)	H-C=O bend in aliphatic aldehydes
	695–635 (s)	C-C-CHO bend
	565-520 (s)	C-C=O bend
	.,	
Alkenes		See Vinyl
monosubst —CH=CH ₂	, –	See Vinylene
disubst $-CH=CH-$	· -	See vinylene
C=CH ₂	-	See Vinylidene
	3050-3000 (w)	CH stretch
trisubst C=CH-	1690–1655 (w-m)	C=C stretch
,	850–790 (m)	CH out-of-plane bending
\ /	850-790 (III)	•
tetrasubst C=C	1690-1670 (w)	C=C stretch, may be absent for symme- metrical compounds
		3
Alkyl	2980–2850 (m)	CH stretch, several bands
	1470–1450 (m)	CH ₂ deformation
	1400–1360 (m)	CH rocking
	740–720 (w)	CH ₂ rocking
Alkynes RC≡C—H	3300-3250 (m-s)	terminal ≡C-H stretch
infiles ito—c ii	2250-2100 (w-m)	C≡C, frequency raised by conjugation

 $a_S = strong; m = medium; w = weak; v = very; br = broad.$

TABLE 7-2 (Continued)

Group or Class	Frequency Ranges (cm ⁻¹) and Intensities ^a	Assignment and Remarks					
Amides							
primary —CONH ₂	3540-3520 (m)	NH ₂ stretch (dil solns); bands shift to 3360-					
	3400-3380 (m)	3340 and 3200-3180 in solid					
	1680-1660 (vs)	C=O stretch (Amide I band)					
	1650-1610 (m)	NH ₂ deformation; sometimes appears as a shoulder (Amide II band)					
	1420-1400 (m-s)	C-N stretch (Amide III band)					
secondary —CONHR	3440-3420 (m)	NH stretch (dil soln); shifts to 3300-3280 in pure liquid or solid					
,	è 1680–1640 (vs)	C=O stretch (Amide 1 band)					
	1560–1530 (vs)	NH bend (Amide 11 band)					
	1310–1290 (m)	C—N stretch					
•	710-690 (m)	assignment uncertain					
tertiary -CONR ₂	1670–1640 (vs)	C=O stretch					
general —CONR ₂	630-570 (s)	N-C=O bend					
general Colvic	615–535 (s)	C=O out-of-plane bend					
	520–430 (m–s)	C—C=O bend					
Amines	4	•					
primary -NH ₂	3460-3280 (m)	NH stretch; broad band, may have some structure					
	2830-2810 (m)	CH stretch					
	1650–1590 (s)	NH ₂ deformation					
secondary -NHR	3350-3300 (vw)	NH stretch					
•	1190–1130 (m)	C-N stretch					
	740-700 (m)	NH deformation					
	450–400 (w, br)	C—N—C bend					
tertiary -NR ₂	510–480 (s)	C—N—C bend					
Amine hydrohalides RNH ₃ +X-	2800-2300 (m-s)	NH ₃ ⁺ stretch, several peaks					
+	1600–1500 (m)	NH deformation (one or two bands)					
R'NH ₂ R X ⁻ NH ₂		, and the same of the same,					
Amino acids —C—COOH	3200-3000 (s)	H-bonded NH ₂ and OH stretch; v broad band in solid state					
(or -CNH ₃ COO-)	1600-1590 (s)	COO ⁻ antisym stretch					
•	1550-1480 (m-s)	-NH ₃ + deformation					
	1425-1390 (w-m)	COO ⁻ sym stretch					
	560-500 (s)	COO rocking					
Ammonium NH ₄ +	3350-3050 (vs)	NH stretch; broad band					
11114	1430-1390 (s)	NH ₂ deformation; sharp peak					
Anhydrides —CO	1850-1780 (variable)	antisym C=O stretch					
<u>`</u>	1770-1710 (m-s)	sym C=O stretch					
Anhydrides —CO O O CO	1220–1180 (vs)	C—O—C stretch (higher in cyclic anhydrides)					
Aromatic compounds	3100-3000 (m)	CH stretch, several peaks					
•	2000-1660 (w)	overtone and combination bands					
	1630-1430 (variable)	aromatic ring stretching (four bands)					
	900-650 (s)	out-of-plane CH deformations (one or two bands depending on substitution)					
	580-420 (m-s)	ring deformations (two bands)					
Azides $-N = N = N$	2160-2080 (s)	N≡N stretch					

TABLE 7-2 (Continued)

Group or Class	Frequency Ranges (cm ⁻¹) and Intensities	Assignment and Remarks
Bromo -C-Br	650-500 (m)	C-Br stretch
t-Butyl (CH ₃) ₃ C	2980-2850 (m)	CH stretch; several bands
	1400–1370 (m)	CH ₃ deformations
	and 1380-1360 (s)	City deformations
Carbodiimides $-N=C=N-$	2150-2100 (vs)	N=C=N antisym stretch
Carbonyl C=0 Carboxylic acids R-C	1870-1650 (vs, br)	C=O stretch
,o		
Carboxylic acids R-C	3550-3500 (s)	OH stretch (monomer, dil soln)
ОН	3300-2400 (s, v br)	H-bonded OH stretch (solid & liq states)
011	1800-1740 (s)	C=O stretch of monomer (dil soln)
	1710-1680 (vs)	C=O stretch of dimer (solid & liq states)
	960-910 (s)	C-OH deformation
	700-590 (s)	O-C=O bend
1	550–465 (s)	C-C=O bend
Chloro -C-Cl	850-550 (m)	C—Cl stretch
Cycloalkanes	580-430 (s)	ring deformation
Diazonium salts $-N \equiv N^+$	2300-2240 (s)	N≡N stretch
Esters R-C OR'		
Fsters R-C	1765-1720 (vs)	C=O stretch
	1290–1180 (vs)	C-O-C antisym stretch
OK.	645–575 (s)	O-C-O bend
Ethers -C-O-C-	1280-1220 (s)	C-O-C stretch in alkyl aryl ethers
	1140-1110 (vs)	C-O-C stretch in dialkyl ethers
	1275-1200 (vs)	C-O-C stretch in vinyl ethers
	1250-1170 (s)	C-O-C stretch in cyclic ethers
	1050-1000 (s)	R(alkyl)—C—O stretch in alkyl aryl ethers
Fluoroalkyl -CF ₃ , -CF ₂ -, etc.	1400-1000 (vs)	C-F stretch
lsocyanates -N=C=O	2280-2260 (vs)	N=C=O antisym stretch
Isothiocyanates -N=C=S	2140-2040 (vs, br)	C=N=S antisym stretch
R		
Ketones C=O	1725-1705 (vs)	C=O stretch in saturated aliphatic ketones
D'	1700-1650 (vs)	C=O stretch in aromatic ketones
K	1705-1665 (s)	C=O and C=C stretching in
_{//} 0	and 1650-1580 (m)	α, β -unsaturated ketones
CH ₂ -C		
Lactones R	1850-1830 (s)	C=O stretch in β -lactones
CH	1780-1770 (s)	C=O stretch in γ-lactones
CH ₂ —0	1750–1730 (s)	C=O stretch in δ -lactones
Methyl —CH ₃	2970-2850 (s)	CH stretch in C-CH ₃ compounds
	2835–2815 (s)	CH stretch in methyl ethers (O—CH ₃)
	2820–2780 (s)	CH stretch in N—CH ₃ compounds
	1470–1440 (m)	CH ₃ antisym deformation

TABLE 7-2 (Continued)

Group or Class	Fr	equency Ranges (cm ⁻¹) and Intensities ^a	Assignment and Remarks
Methylene -CH ₂ -	and	2940-2920 (m) d 2860-2850 (m)	CH stretches in alkanes
	and	3090-3070 (m) 1 3020-2980 (m)	CH stretches in alkenes
·		1470-1450 (m)	CH ₂ deformation
Naphthalenes	and	645-615 (m-s) 1 545-520 (s) 400-465 (variable)	in-plane ring bending
Nitriles —C≡N	\$ 6	490-465 (variable) 2260-2240 (w) 2240-2220 (m) 580-530 (m-s)	out-of-plane ring bending C≡N stretch in aliphatic nitriles C≡N stretch in aromatic nitriles C—C—CN bend
Nitro -NO ₂	and	1570-1550 (vs) as ym 1 1380-1360 (vs) as ym	NO ₂ stretches in aliphatic nitro compounds
		1480-1460 (vs) a 5 7 m 1 1360-1320 (vs) a 5 7 m	NO ₂ stretches in aromatic nitro compounds
		920-830 (m) 650-600 (s) 580-520 (m) 530-470 (m-s)	C-N stretch NO ₂ bend in aliphatic compounds NO ₂ bend in aromatic compounds NO ₂ rocking
Oximes = NOH		3600-3590 (vs) 3260-3240 (vs) 1680-1620 (w)	OH stretch (dil soln) OH stretch (solids) C=N stretch; strong in Raman
Phenols Ar—OH		720-600 (s, br) 450-375 (w)	O—H out-of-plane deformation C—OH deformation
Phenyl C ₆ H ₅ —		3100-3000 (w-m) 2000-1700 (w)	CH stretch four weak bands; overtones and combinations
		1625-1430 (m-s) 1250-1025 (m-s) 770-730 (vs) 710-690 (vs) 560-420 (m-s)	aromatic C=C stretches (four bands) CH in-plane bending (five bands) CH out-of-plane bending ring deformation ring deformation
Phosphates (RO) ₃ P=O			
R = alkyl $R = aryl$		1285-1255 (vs) 1050-990 (vs) 1315-1290 (vs) 1240-1190 (vs)	P=O stretch P-O-C stretch P=O stretch P-O-C stretch
Phosphines —PH ₂ , —PH		2410-2280 (m) 1100-1040 (w-m) 700-650 (m-s)	P—H stretch P—H deformation P—C stretch
Pyridyl -C ₅ H ₄ N		3080-3020 (m)	CH stretch
	anc	1620-1580 (vs) 1 1590-1560 (vs)	C=C and C=N stretches
	air	840-720 (s)	CH out-of-plane deformation (one or two bands, depending on substitution)
Cil Cill		635-605 (m-s)	in-plane ring bending
Silanes —SiH ₃ —SiH ₂ —		2160-2110 (m) 950-800 (s)	SI—H stretch Si—H deformation

TABLE 7-2 (Continued)

Group or Class	Frequency Ranges (cm ⁻¹) and Intensities ^a	Assignment and Remarks
Silanes (fully substituted)	1280-1250 (m-s) 1110-1050 (vs) 840-800 (m)	Si—C stretch Si—O—C stretch (aliphatic) Si—O—C deformation
Sulfates $R-O-SO_2-O-R$ $R-O-SO_3-M^+$	1140-1350 (s) and 1230-1150 (s) 1260-1210 (vs)	S=O stretches in covalent sulfates S=O stretches in alkyl sulfate salts
$(M = Na^+, K^+, etc.)$	and 810-770 (s)	C—O—S stretch
Sulfides C—S—	710–570 (m)	C—S stretch
Sulfones —SO ₂ —	1360-1290 (vs) 1170-1120 (vs) 610-545 (ms)	SO ₂ antisym stretch SO ₂ sym stretch SO ₂ scissor mode
Sulfonic acids -SO ₂ OH .	1250-1150 (vs, br)	S=O stretch
Sulfoxides S=O	1060-1030 (s, br) 610-545 (m-s)	S=O stretch SO ₂ scissoring
Thiocyanates $-S-C \equiv N$	2175-2160 (m) 650-600 (w) 405-400 (s)	C≡N stretch S-CN stretch S-C≡N bend
Thiols —S—H	2590-2560 (w) 700-550 (w)	S—H stretch; strong in Raman C—S stretch; strong in Raman
Triazines C ₃ N ₃ Y ₃ 1,3,5-trisubst	1600-1500 (vs) 1380-1350 (vs) 820-800 (s)	ring stretching ring stretching CH out-of-plane deformation
Vinyl —CH=CH ₂	3095-3080 (m) and 3030-2980 (w-m) 1850-1800 (w-m) 1645-1615 (m-s) 1000-950 (s) 950-900 (vs)	=CH ₂ stretching =CH stretching overtone of CH ₂ out-of-plane wagging C=C stretch CH out-of-plane deformation CH ₂ out-of-plane wagging
Vinylene -CH=CH-	3040-3010 (m) 1665-1635 (w-m) 1675-1665 (w-m) 980-955 (s) 730-665 (s)	=CH ₂ stretching C=C stretch (cis isomer) C=C stretch (trans isomer) CH out-of-plane deformation (the isomer) CH out-of-plane deformation (the isomer)
Vinylidene C=CH ₂	3095–3075 (m) 1665–1620 (w–m) 895–885 (s)	=CH ₂ stretching C=C stretch