Dr. Richter

PRINT NAME \qquad .

SIGN NAME

You are required to answer all question sets. Please note that some of the question sets offer you a choice of questions - do only the number of questions asked for. Please write legibly and draw clearly. Points will be deducted for illegible and unclear answers. The point total for this exam is 100 and the value of each question set is shown in parenthesis beside that set. READ ALL QUESTIONS CAREFULLY AND APPORTION YOUR TIME ACCORDINGLY.

1. Draw a Lewis structure for one (1) of the following ions:

2. Draw a skeletal structure for one (1) of the following molecules:
3. The structure below belongs to a family of compounds called the "damascenones." These compounds are responsible for the fragrance of roses. Indicate the hybridization of each of the numbered atoms in the provided list on the right. Remember, use the resonance hybrid as your guide. If an atom is "in between," label it as such.

ANSWERS:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. Consider the five structures below (a-e).

A. Draw the resonance hybrid of the ion represented by structures a-e.
B. Rank resonance structures a-e according to contribution to the resonance hybrid.

Answers: \qquad

greatest contribution \longrightarrow least contribution
5. Consider the molecule (chlorambucil, a chemotherapeutic agent) shown below.

For each of the highlighted bonds 1-4, match the bond with a 3-D orbital picture AND the description of the orbital overlap forming the σ and/or π bond(s). Write your answers in the table below. Notes: 1. Do NOT consider the resonance hybrid for this exercise, 2. You may need to use more than one description per bond, 3. Not all choices will be used.

Orbital Picture Choices

A

D

1: $\sigma_{\mathrm{Csp}^{3}-\mathrm{H}_{1 \mathrm{~s}}}$	8: $\sigma_{\mathrm{Nsp}^{3}-\mathrm{Csp}^{3}}$
2: $\sigma_{\mathrm{Csp}^{3}-\mathrm{Osp}^{2}}$	9: $\sigma_{\mathrm{Csp}^{2}-\mathrm{Csp}^{2}}$
3: $\sigma_{\mathrm{Csp}^{2}-\mathrm{Osp}^{2}}$	10: $\sigma_{\mathrm{Csp}^{3}-\mathrm{Csp}^{3}}$
4: $\sigma_{\mathrm{Csp}^{2}-\mathrm{Nsp}^{2}}$	11: $\sigma_{\mathrm{Csp}^{2}-\mathrm{Csp}^{3}}$
5: $\sigma_{\mathrm{Csp}^{2}-\mathrm{Nsp}^{3}}$	12: ${ }^{2} \mathrm{Op-Cp}$
6: $\sigma_{\mathrm{Nsp}}-\mathrm{Nsp}^{2}$	13: ${ }^{\pi} \mathrm{Cp}-\mathrm{Np}$
7: $\sigma_{\mathrm{Nsp}}{ }^{2}-\mathrm{Nsp}^{2}$	14: $\pi_{\mathrm{Cp}-\mathrm{Cp}}$

Description Choices

Answers:

Bond	Orbital Picture	Description(s)	Bond	Orbital Picture	Description(s)
1			3		
2			4		

7. Of the $\mathbf{5}$ pure substances below, circle the one with the highest boiling point.

8. For each compound below (a-c), circle which proton (1, 2, or 3) has the lowest pKa .
a.

1

b.

c.

9. Of the $\mathbf{5}$ bases below, circle the weakest (i.e. least reactive).

10. Identify the circled functional groups in the structure below. Reminder: use the term that Smith calls the "Type of Compound." For example, use "ether," not "alkoxy." Write your answer in the blanks provided.

11. For each of the following reactions (A-D) a. label the Lewis base (nucleophile) and the Lewis acid (electrophile) and \mathbf{b}. draw reaction arrows to show the appropriate electron movement between the nucleophile and electrophile. You do not need to show the products.
A

B

$+$

\longrightarrow
C

12. Indicate whether each statement a-e is true (T) or false (F).
\qquad a. IR spectroscopy can be used to obtain functional group information about a compound.
\qquad b. When matter absorbs infrared radiation, it causes vibrational excitations to take place within the matter.
\qquad c. IR spectral data is reported in parts per million or "ppm."
\qquad d. In general, bonds between lighter atoms will absorb a higher frequency of IR radiation than will bonds between heavier atoms.
\qquad e. Bonds between sp^{3} atoms tend to vibrate at lower frequencies than do bonds between sp^{2} - or sp -hybridized atoms.
13. Match each IR spectrum a-c below to one of the structures i-iii.
i.
ii.

iii.

-(600Z 'ITOZ Iqnd) LOOZ '600Z כ甘dnI uo paseg

TABLE 7-2 An Alphabetic Listing of Some Functional Groups and Classes of Compounds with Their Absorption Frequencies in the Infrared

Group or Class	Frequency Ranges (cm^{-1}) and Intensities ${ }^{\text {a }}$	Assignment and Remarks
Acid halides		
aliphatic	1810-1790 (s)	$\mathrm{C}=0$ stretch; fluorides $50 \mathrm{~cm}^{-1}$ higher
	965-920 (m)	C-C stretch
	440-420 (s)	$\mathrm{Cl}-\mathrm{C}=\mathrm{O}$ in-plane deformation
aromatic	1785-1765 (s)	$\mathrm{C}=\mathrm{O}$ stretch; also a weaker band (1750$1735 \mathrm{~cm}^{-1}$) due to Fermi resonance
	890-850 (s)	$\mathrm{C}-\mathrm{C}$ stretch ($\mathrm{Ar}-\mathrm{C}$) or $\mathrm{C}-\mathrm{Cl}$ stretch
Alcohols primary $-\mathrm{CH}_{2} \mathrm{OH}$		
	3640-3630 (s)	OH stretch, dil CCl_{4} soln
	1060-1030 (s)	$\mathrm{C}-\mathrm{OH}$ stretch; lowered by unsaturation
secondary - CHROH	3630-3620 (s)	OH stretch, dil CCl_{4} soln
	1120-1080 (s)	$\mathrm{C}-\mathrm{OH}$ stretch; lower when R is a branched chain or cyclic
tertiary - $\mathrm{CR}_{2} \mathrm{OH}$	3620-3610 (s)	OH stretch, dil CCl_{4} soln
	1160-1120 (s)	$\mathrm{C}-\mathrm{OH}$ stretch; lower when R is branched
general - OH	3350-3250 (s)	OH stretch; broad band in pure solids or liquids
	1440-1260 (m-s, br)	$\mathrm{C}-\mathrm{OH}$ in-plane bend
	. 700-600 (m-s, br)	$\mathrm{C}-\mathrm{OH}$ out-of-plane deformation
Aldehydes $\mathrm{R}-\mathrm{C}$	$\left.\begin{array}{l} 2830-2810(\mathrm{~m}) \\ 2740-2720(\mathrm{~m}) \end{array}\right\}$	Fermi doublet; CH stretch with overtone of CH bend (see page 164)
-	1725-1695 (vs)	$\mathrm{C}=0$ stretch; slightly higher in CCl_{4} soln
	1440-1320 (s)	$\mathrm{H}-\mathrm{C}=\mathrm{O}$ bend in aliphatic aldehydes
	695-635 (s)	$\mathrm{C}-\mathrm{C}-\mathrm{CHO}$ bend
	565-520 (s)	$\mathrm{C}-\mathrm{C}=\mathrm{O}$ bend
Alkenes		
$\text { monosubst }-\mathrm{CH}=\mathrm{CH}_{2}$: - -	See Vinyl See Vinylene
	-	See Vinylidene
trisubst	3050-3000 (w)	CH stretch
	1690-1655 (w-m)	$\mathrm{C}=\mathrm{C}$ stretch
	850-790 (m)	CH out-of-plane bęnding
tetrasubst	1690-1670 (w)	$\mathrm{C}=\mathrm{C}$ stretch, may be absent for symmemetrical compounds
Alkyl	2980-2850 (m)	CH stretch, several bands
	1470-1450 (m)	CH_{2} deformation
	1400-1360 (m)	CH_{3} deformation
	740-720 (w)	CH_{2} rocking
Alkynes $\quad \mathrm{RC} \equiv \mathrm{C}-\mathrm{H}$	3300-3250 (m-s)	terminal $\equiv \mathrm{C}-\mathrm{H}$ stretch
	$\begin{aligned} & 2250-2100(\mathrm{w}-\mathrm{m}) \\ & 680-580(\mathrm{~s}) \end{aligned}$	$\mathrm{C} \equiv \mathrm{C}$, frequency raised by conjugation $-\mathrm{C} \equiv \mathrm{CH} \text { bend }$

[^0]TABLE 7-2 (Continued)

TABLE 7-2 (Continued)

TABLE 7-2 (Continued)

Group or Class	Frequency Ranges (cm^{-1}) and Intensities ${ }^{\text {a }}$	Assignment and Remarks
Methylene - $\mathrm{CH}_{2}-$	$2940-2920(\mathrm{~m})$ and $2860-2850(\mathrm{~m})$ $3090-3070(\mathrm{~m})$ and $3020-2980(\mathrm{~m})$ $1470-1450(\mathrm{~m})$	CH stretches in alkanes CH stretches in alkenes CH_{2} deformation
Naphthalenes	$\begin{array}{ll} & 645-615(\mathrm{~m}-\mathrm{s}) \\ \text { and } & 545-520(\mathrm{~s}) \\ & 490-465(\text { variable }) \end{array}$	in-plane ring bending out-of-plane ring bending
Nitriles - $\mathrm{C} \equiv \mathrm{N}$	$\begin{array}{r} \quad 2260-2240(\mathrm{w}) \\ 2240-2220(\mathrm{~m}) \\ 580-530(\mathrm{~m}-\mathrm{s}) \end{array}$	$\mathrm{C} \equiv \mathrm{N}$ stretch in aliphatic nitriles $\mathrm{C} \equiv \mathrm{N}$ stretch in aromatic nitriles $\mathrm{C}-\mathrm{C}-\mathrm{CN}$ bend
Nitro - NO_{2}	$1570-1550(\mathrm{vs}) a s y m$ and $1380-1360(\mathrm{vs})$ as ym $1480-1460(\mathrm{vs})$ a 5 ym and $1360-1320(\mathrm{vs})$ $95 y \mathrm{ym}$ $920-830(\mathrm{~m})$ $650-600(\mathrm{~s})$ $580-520(\mathrm{~m})$ $530-470(\mathrm{~m}-\mathrm{s})$	NO_{2} stretches in aliphatic nitro compounds NO_{2} stretches in aromatic nitro compounds $\mathrm{C}-\mathrm{N}$ stretch NO_{2} bend in aliphatic compounds NO_{2} bend in aromatic compounds NO_{2} rocking
Oximes $=\mathrm{NOH}$	$\begin{aligned} & 3600-3590 \text { (vs) } \\ & 3260-3240 \text { (vs) } \\ & 1680-1620 \text { (w) } \end{aligned}$	OH stretch (dil soln) OH stretch (solids) $\mathrm{C}=\mathrm{N}$ stretch; strong in Raman
Phenols $\mathrm{Ar}-\mathrm{OH}$	$\begin{aligned} & 720-600(\mathrm{~s}, \mathrm{br}) \\ & 450-375(\mathrm{w}) \end{aligned}$	$\mathrm{O}-\mathrm{H}$ out-of-plane deformation $\mathrm{C}-\mathrm{OH}$ deformation
Phenyl $\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{aligned} & 3100-3000(\mathrm{w}-\mathrm{m}) \\ & 2000-1700(\mathrm{w}) \\ & 1625-1430(\mathrm{~m}-\mathrm{s}) \\ & 1250-1025(\mathrm{~m}-\mathrm{s}) \\ & 770-730(\mathrm{vs}) \\ & 710-690(\mathrm{vs}) \\ & 560-420(\mathrm{~m}-\mathrm{s}) \end{aligned}$	CH stretch four weak bands; overtones and combinations aromatic $\mathrm{C}=\mathrm{C}$ stretches (four bands) CH in-plane bending (five bands) CH out-of-plane bending ring deformation ring deformation
$\begin{aligned} & \text { Phosphates }(\mathrm{RO})_{3} \mathrm{P}=\mathrm{O} \\ & \mathrm{R}=\text { alkyl } \\ & \mathrm{R}=\text { aryl } \end{aligned}$	$\begin{aligned} & 1285-1255 \text { (vs) } \\ & 1050-990 \text { (vs) } \\ & 1315-1290 \text { (vs) } \\ & 1240-1190 \text { (vs) } \end{aligned}$	$\mathrm{P}=\mathrm{O}$ stretch $\mathrm{P}-\mathrm{O}-\mathrm{C}$ stretch $\mathrm{P}=\mathrm{O}$ stretch $\mathrm{P}-\mathrm{O}-\mathrm{C}$ stretch
Phosphines $-\mathrm{PH}_{2},-\mathrm{PH}$	$\begin{aligned} & 2410-2280(\mathrm{~m}) \\ & 1100-1040(\mathrm{w}-\mathrm{m}) \\ & 700-650(\mathrm{~m}-\mathrm{s}) \end{aligned}$	$\begin{aligned} & \mathrm{P}-\mathrm{H} \text { stretch } \\ & \mathrm{P}-\mathrm{H} \text { deformation } \\ & \mathrm{P}-\mathrm{C} \text { stretch } \end{aligned}$
Pyridyl $-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\begin{gathered} 3080-3020(\mathrm{~m}) \\ 1620-1580(\mathrm{vs}) \\ \text { and } 1590-1560(\mathrm{vs}) \\ 840-720(\mathrm{~s}) \\ \\ 635-605(\mathrm{~m}-\mathrm{s}) \end{gathered}$	CH stretch $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ stretches CH out-of-plane deformation (one or two bands, depending on substitution) in-plane ring bending
$\text { Silanes } \begin{aligned} & -\mathrm{SiH}_{3} \\ & \\ & -\mathrm{SiH}_{2}- \end{aligned}$	$\begin{gathered} 2160-2110(\mathrm{~m}) \\ 950-800(\mathrm{~s}) \end{gathered}$	SI-H stretch $\mathrm{Si}-\mathrm{H}$ deformation

TABLE 7-2 (Continued)

[^0]: ${ }^{a_{s}}=$ strong; $m=$ medium; $w=$ weak; $v=v e r y ; b r=$ broad.

